Python for Spreadsheet
Manipulation 101

Af\f\

A B C D
Program Registered For
2 29 John Doe BasketWeaving
3 29 John Doe ScubaDiving
4 872 Jane Dill ScubaDiving
5 872 Jane Dill Acrobatics
6 872 Jane Dill ScubaDiving
7 75 Mick Jag ComputerProgramming
A B (@ D E F G
1 Id First Name Last Name Prg_Acrobatics Prg_BasketWeaving Prg_ComputerProgramming Prg_ScubaDiving
2 29 John Doe Registered Registered
3 75 Mick Jag Registered
4 872 Jane Dill Registered Registered

Excel vs/and Python

(Today, just Python, for practice!)

Syllabus

101 (today)

® “Hello, World!”
® Programmer-speak
® Sample Code!

©)

O 0O O O O O O

Import/Export CSV/XLSX
Counting & displaying things
Duplicates & uniques
Sorting rows
Adding/dropping columns
Date-time gotchas
Selectively editing cells
Basic matching / VLOOKUP

&L &L Yes, it's alot! &£ &£

1. Watch me EXPLAIN so:
- “Cool! #%©e”

- Recognition when Googling
2. w —keep up:

- To reinforce the experience

102 (future)

Anything we miss today

More matching/VLOOKUP problems
More “hard problems”

BYO problem & sample data; let’s solve it!

Links

e Every link will start with https://link.stthomas.edu/sfpy201810- ...

e Struggling to type fast enough? Code snippets at:

- https://link.stthomas.edu/sfpy201810-info

m (Online folks: you're already here — it's where you got the webinar link.)

o “Hands-on” slides will indicate which exercise from this “info sheet” we’re
on using an orange cloud with a number in it!

3F

Let’'s Run A Program

https://link.stthomas.edu/sfpy201810-hello

https://link.stthomas.edu/sfpy201810-hello

e Running Codebunk examples (“fork” + don'’t log in)

e Any problems running it?
o (Remind me to check the chat)

1A

https://link.stthomas.edu/sfpy201810-hello

e (Change Hello Worldto Yay Us and run your code.
e Any problems? Does “Yay Us” show up?

1B

Code Fragment Jargon & IDEs

e Expression: code that is a value. °
Like a single Excel cell’'s formula.
o 'Hello World'
o 'Yay Us'
© type('Hello World')
o (1L +1) /5 °
o 'Amanda’' .startsWith('Z2"')
e Statement: code that does.
Smallest runnable program.

Statement : Program :: Sentence : Essay
© print(SOME EXPRESSION HERE)
0 cool variable Name = SOME
EXPRESSION HERE

Operat(-ion/-or) / Function / Method:
expression glue (—expression or —statement)

o +
0 print(...)
o type(...)

Comments: code fragment for humans
O # One-line comment
o tr
Multi-line comment:
For really long comments!
IDE: text editor with a “Run” button

o Install & run on a computer you control for
corporate data

Data Types

e Data Type: dimension & kind
o 0-D (single points of data)
m Text? Number? True/False (Boolean)? Blank (Null)?
o 1-D collections (lists of 0-D points)
m Row-like (meant to represent 1 “record”)?
m Column-like (meant to represent 1 “field” across multiple records)?
e If column-like, what type (text/number/Boolean/etc) are the 0-D “data points”
within this list?
o 2-D collections (tables of 1-D row-lists & 1-D column-lists intersecting at 0-D points)

Why “Dimension” Matters

e “Dimension” & “Kind” work together to constrain what “operations”
we can do to data. Can we ...

+, -7 0D #, 0D text if “+” means “concatenate”
fetch 1st letter? 0D text data

Sy == 1 0D number, 0D text ...

SELECT? 1D & 2D data

+ fetch “item #3” (2D—1D; 1D—0D)
+ fetch “odd-numbered” items (2D—2D; 1D—1D)

ITERATE? (inspect each item, potentially altering its value) 1D & 2D data
* multiply each by 3
« all-caps any item that starts with a P

AGGREGATE? (combine all the items together into just one value) 1D & 2D data
* max
* sum

v Data Types = Easier "Expression” Writing

e Tricky #1: Fewer hints about “expression operations while you program

=SUM(3, |

(in online manuals, though)

e Tricky #2: Not just “around’ & “between’ operations like Excel’s

ISNUMBER ("apple") & 1+4

o Also “after’ operations, connected by a period, like "Banana" . lower ()
o Worse: “after’ operations in Pandas w/ random extra period, like ... str. lower ()
o Or: “after” operations in Pandas that launch straight into brackets, like ExpressionHere]..]

Q: Panic? 5) &

print (ExpressionHere)

print (type (ExpressionHere))
CoolVariableName = ExpressionHere

KEEP
CALM

AND

INSPECT Confusedwhat9 - 4 < 2 does? Inspect smaller problems!

YOUR h o print(..) &print(type(..)) W/ 9 - 4,5,2,5 < 2, False, etc.
o

DATA TYp ES Copy/paste smaller problems back together, just like you do with big Excel formulas

print (CoolVariableName)

print (type (CoolVariableName))

Coding Culture Shock: Not Visual

e Working “blind” (vs. Excel) @ & I
Useful tricks: '

e “Print” statements
(puts otherwise-invisible data on the screen)

e Nicknaming intermediate “expression” outputs (“setting variables”) for later
use in code
(like “wet” & “dry” baking bowls)

e “Comments” (notes to self)

No shame in “programming by Google”

Google

print command in python|

(=

Let's Try That!

Stay on your current “code bunk.”

Already close it? Re-“fork” https://link.stthomas.edu/sfpy201810-hello

Backspace or “"comment out” your old code

(Who can guess how we “comment out” code?)

Type and run, one at a time. Surprises? 1C

°* print('Hello World') e Boldface: The “outermost expression”
* print(type('Hello World')) within the “print (...)” operator
. int (5 : i ,
print (3) e Underline: The expression we're
* print(type(5)) . . . « »
. interested in seeing the “value” or the
* print (None)

° print (False)

°* print (type(False))

° print(3 * 2.5 * 4)

* print(type(3_* 2.5 * 4))

° print(3 * 2.5 * 4 < 1)

* print(type(3 * 2.5 * 4 < 1))
°* myFirstVariable = 3 * 2.5 * 4
° print (myFirstVariable)

(
(
(
(
(
* print (type (None)) “data type” of
(
(
(
(
(

* print (type (myFirstVariable))

* print (myFirstVariable < 1)

®* print (type (myFirstVariable < 1))

'Bye!")

(
(
(t
(.

®* print

Answer Key. Surprises? (Chat room, surprises?)

print("Hello World') Hello World
print(type('Hello World')) <class 'str'>

print(5) 5

print(type(5)) <class 'int'>
print(None) None
print(type(None)) <class 'NoneType'>
print(False) False
print(type(False)) <class 'bool">
print(3 * 2.5 * 4) 30.0

print(type(3 * 2.5 * 4)) <class 'float'>
print(3 *2.5*4 <1) False

print(type(3 * 2.5 * 4 <1)) <class 'bool">
myFirstVariable = 3 * 2.5 * 4 {{{{{nothing prints out for this line}}}}}
print(myFirstVariable) 30.0
print(type(myFirstVariable)) <class 'float'>
print(myFirstVariable <1) False
print(type(myFirstVariable < 1)) <class 'bool'>
print('Bye!") Bye!

Expression-Nesting Pop Quiz

e "Angela".startsWith("P")
o 3%25%4<1

How many expressions can you
see in each example above?

Getting really good at this game will help you R % |t
“backspace & replace” useful code you find on —
the internet, even if you don’t understand it! Woras []

1 |[First

Questions? (Chat room?)

(Trouble getting code to run?)

Let's look at a CSV file
using Python

https://link.stthomas.edu/sfpy201810-readcsv

sample1.csv

e 7 rows, 5 columns (people & employer)

A B C D E
1 1d First Last Email Company
2 5829 Jimmy Buffet jb@example.com RCA
3 2894 Shirley Chisholm sc@example.com United States Congress
4 294 Marilyn Monroe mm@example.com Fox
5 (30829 Cesar Chavez @ cc@example.com United Farm Workers
6 827 Vandana Shiva vs@example.com Navdanya
7 :9284 Andrea Smith as@example.com University of California
8

724 Albert Howard ah@example.com Imperial College of Science

https://link.stthomas.edu/sfpy201810-readcsv 2A

o | (remember to “fork” it if it won’t run!)

e Any problems running it?
o (Remind me to check the chat)

Excel, too!

e [n addition to pandas.read csv(..), there’s also
pandas.read excel(..)

e \When we finish crafting a Pandas “DataFrame” that we like and saving it into

a variable called, say, “outputd£f,” we can do:

O outputdf.to _csv(..)
0 outputdf.to_excel(..)

sample2.csv

e 6 rows, 5 columns (people & favorite food)

A

Personld

983mv
9e84f
k28fo
x934
8xi
02e

~N OO o AW

B C

FirstName LastName Em

Shirley Temple
Andrea Smith
Donald Duck
Marilyn Monroe
Albert Howard
Vandana Shiva

st@example.com
as@example.com
dd@example.com
mm@example.com
ahotherem@example.com
vs@example.com

E
FavoriteFood
Lollipops
Kale
Pancakes
Carrots
Potatoes
Amaranth

2B
https://link.stthomas.edu/sfpy201810-readCSV - Edit the COde (CSV 2)

Change all but the first occurrence of d£1 to d£2 and re-run.
e There are 19 changes to make (the last 19 lines of the program)
e Don’t change the one at the very top that starts with d£1 =

Review:
e Are you seeing people and their favorite foods?
e |s the total row count down from 7 to 67

e Any problems? Questions?
o (Remind me to check the chat)

sample3.csv

e 9rows, 5 columns (people & DOB & address)

A B & D E
1 |Id First Last D.0O.B. Address
2 69435 Salli Broxup 12/3/1991 305 Grover Lane, Sunny, AK
3 67121 Quintina Lean 10/14/1963 305 Grover Lane, Sunny, AK
4 49617 Corny Noller 12/13/1990 305 Grover Lane, Sunny, AK
5 86605 Yuri Dalton 11/12/1980 800 Golden Leaf Street, Snowy, NM
6 22276 Doretta Herche 9/21/2010 800 Golden Leaf Street, Snowy, NM
7 64465 Mata Pierrepont 8/19/1970 800 Golden Leaf Street, Snowy, NM
8 32443 Othelia Eastbury 8/4/1955 87834 Lyons Terrace, Rainy, OR
9 22082 Pansy Mallya 8/4/1955 87834 Lyons Terrace, Rainy, OR

10 67526 Kata Windus 10/4/1991 98 Paget Trail, Cloudy, WY

2C

https://link.stthomas.edu/sfpy201810-readCSV - Edit the COde (CSV 3)

Change all but the first occurrence of d£2 to d£3 and re-run.
e There are 19 changes to make (the last 19 lines of the program)

e Don’t change the one at the very top that starts with d£2

Review:
e Are you seeing people and their addresses?
e |s the total row count up from 6 to 9?

e Any problems? Questions?
o (Remind me to check the chat)

10-Minute Break

Let's get a little bit harder

3 exercises, same code base.

(If you closed it, re-visit
https://link.stthomas.edu/sfpy201810-readcsv
and “fork™ it as soon as the page loads.)

https://link.stthomas.edu/sfpy201810-readCSV - Edit the COde 2D

1. “Comment out” the whole print (..) section of code — all 19 lines.
o Do this by adding 3 single quotes in a row, ' ' ', both before and after that section of code.

2. At the end of the program, add the following new line of code:
print (df3['Address'] .unique())
3. Run the code

Review:

e Do you see the following output?
o ['305 Grover Lane, Sunny, AK' '800 Golden Leaf Street, Snowy, NM' ‘87834 Lyons
Terrace, Rainy, OR' '98 Paget Trail, Cloudy, WY']
e Any problems? Questions?
o (Remind me to check the chat)

https://link.stthomas.edu/sfpy201810-readCSV - Edit the COde

1. At the end of the program, add the following new line of code:

print (len(df3['Address'] .unique()))
o Tip: It's like the line before it, only with 1en (...) inside the print (...)

2. Run the code

Review:

e Do you see the following output right below your list of addresses?
o 4

e Any problems? Questions?
o (Remind me to check the chat)

2E

Useful things to wrap around unique (...)

e len(..) —gives you a count of the unique values

e list(..) —useful when you want to copy/paste the output to your clipboard
with commas between the values

e sorted(..) —the same output as 1ist(..), only case-sensitive alpha order

e sorted(.., key=str.lower) —the same output as sorted(..), only
case-insensitive alpha order

https://link.stthomas.edu/sfpy201810-readCSV - Edit the COde 2F

1. “Comment out” the last 2 lines of code you added.
o Do this by putting a # at the beginning of each of the 2 lines of code.
2. At the end of the program, add the following 3 new lines of code:
print (df3.drop duplicates(['Address'], keep=False))
print (len(df3.drop duplicates(['Address'], keep=False)))
print (len(df3.drop duplicates(['Address','D.O0.B.'], keep=False)))

3. Run the code
Review:

e Do you see...
o First, the contents of “row 8” (really 9), which is the only person who lives alone in CSV 37?
o Second, the number 1 (the # of rows w/ a unique address)?
o Third, the number 7 (the # of rows w/ a unique address+DOB combo—i.e. no roomie twins)?
e Any problems? Questions?
o (Remind me to check the chat)

Note d£3 was “reusable’

e .drop duplicates(..) didn’t really do anything to df3 in that code

o We were just print(..) -ing copies

e Know that there ARE ways to alter the contents of our variable “d£3”

We did some neat stuff

e Read a CSV file off the world wide web into our program

e Displayed a copy of that CSV file on the screen in all its ugly glory

e Displayed just its “head” and “tail” (handy if it’s 3,000 lines long)

e Counted lots of things with “len(...)”

e Combined “len(..)” & “['Address'] .unique ()~ into an address count

e Displayed just “unique-data” rows with “.drop duplicates(..)”
o .drop_duplicates(..) has other settings that allow us to leave in the first or last of any
duplicate rows, instead of suppressing all rows that have a duplicate.

If you can display a DataFrame, you can export it**

e I|fprint(type (..)) displays <class ‘pandas.core.frame.DataFrame'>, “...
Is an expression to which you can append .to _csv(..) or .to_excel(..)

o Protip: the .to_csv(..) command gets lengthy.
Save your “DataFrame” to a “variable” as in the example below.

outputdf = df3.drop duplicates(['Address'], keep=False)
outputdf.to csv('C:\\myfolder\\myfile.csv', index=False, quoting=1)

** Not today. You're running code online.

More Theory:
DataFrames, Series, & Lists — Oh My!

DataFrames & Series & Lists — oh my!

DataFrame Pandas plugin 2-D (Table-shaped)
Series Pandas plugin 1-D (List-shaped)
List Python by default 1-D (List-shaped)

1-D AND 2-D data actions

e Select sub-members
o (1-D: “select cells” / “select items”)

o (2-D: “select columns”)
o (2-D: “select rows”)

e “Sort” the data
o (1-D: plain-old sort)

o (2-D: sort entire “rows” after specifying “columns” whose cell contents will be used for sorting)

2-D data actions

Adding a “column”

Dropping a “column”

Re-ordering “columns”
Renaming a “column label”
Importing from a spreadsheet file
Exporting to a spreadsheet file

1-D data actions

e Editing the contents of cells/items based on other “corresponding” 1-D data

e Using “0-D”-specific operations on the contents of cells/items
o .isin(..)
0 .notnull ()
o .str.startwith(..)
o <
o +

7

SO? e Programming is “working blind
. compared to Excel.

e \When stuck, helpful to “think
like a computer” about what
you're “really trying to do to

P your data.”

Pandas Index

Pandas Index

e Pandas does a lot of its “inter-column” / “corresponding data’ magic
based on row numbering, which it calls “indexing.”

e Usually safe to think of “indexes” as a “row number” or “row ID”
o “Row ID” probably best. Get used to seeing:
m “Missing” row IDs (0, 2, 6, 7)
m “Out-of-order’ row IDs (3, 0, 1, 2)

o Know that more complicated “indexes” exist
m “Named” row IDs ("983mV', '9e84f', 'k28fo', '’x934", '8xi', '02e")
m Multi-level indexes (when doing advanced pivoting & grouping)
m Technically, column names are also indexes

Visual Cues

DataFrames vs. Series vs. Lists

What “DataFrames” look like

® print(type (ExpressionHere)) displays <class '‘pandas.core.frame.DataFrame'>
® print (ExpressionHere) looks something like:
With generic row IDs With “named” row IDs With generic row IDs, sorted by LastName
FirstName LastName
FirstName LastName PersonId Personld FirstName LastName PersonId
0 Shirley Temple 983mv 983mv Shirley Temple 2 Donald Duck k28fo
1 Andrea Smith 9e84f 9e84f Andrea Smith 4 Albert Howard 8xi
2 Donald Duck k28fo k28fo Donald Duck 3 Marilyn Monroe x934
3 Marilyn Monroe x934 x934 Marilyn Monroe 5 Vandana Shiva 02e
4 Albert Howard 8xi 8xi Albert Howard 1 Andrea Smith 9e84f
5 Vandana Shiva 02e 02e Vandana Shiva 0 Shirley Temple 983mv
e Nothing displayed below the last row
e Multiple data columns allowed. Inherently 2-DIMENSIONAL.
e “Data column” labels as high as they can go, right-aligned over data
e “Row IDs” at far left. 1) no label or 2) “lowered & left-aligned” if “named”

O (“Named” happens when you use a special command to convert a data column into a “row ID’)

What “Series” look like

® print (type (ExpressionHere)) displays <class '‘pandas.core.series.Series'>
® print (ExpressionHere) looks something like:

“First Name” column “First Name” column Column w/ “Does this ‘First Row “2”
(with “named” row IDs) Name’ cell start with ‘A’?”
PersonId

0 Shirley 983mv Shirley 0 False

1 Andrea 9e84f Andrea 1 True PersonId k28fo
2 Donald k28fo Donald 2 False FirstName Donald
3 Marilyn x934 Marilyn 3 False LastName Duck
4 Albert 8xi Albert 4 True Em dd@example.com
5 Vandana 02e Vandana 5 False FavoriteFood Pancakes
Name: FirstName, dtype: object Name: FirstName, dtype: object Name: FirstName, dtype: bool Name: 2, dtype: object

o “Name” grappicaie) & “Data Type of contents” displayed below last row
Only 1 “data” column allowed. Inherently 1-DIMENSIONAL.

O (“Personld as row number” or “Column label as ‘row number” don’t count as a “column” — they’re the “index’)

e No label at top for “data” column
e “Row IDs” still at far left. 1) no label or 2) “lowered & left-aligned” if “named”

O (“Named” happens when you use a special command to convert a data column into a “row ID’)

What “Lists” look like

e print (type (ExpressionHere)) displays <class ‘list'>
e print (ExpressionHere) looks something like:
(@) ['Shirley', 'Andrea', 'Donald', 'Marilyn', 'Albert', 'Vandana']
O [False, True, False, False, True, False]
(©) ['k28fo', 'Donald', 'Duck', 'dd@example.com', 'Pancakes']
@) ['PersonId', 'FirstName', 'LastName', 'Em', 'FavoriteFood']
e Single line. Inherently 7-DIMENSIONAL.
O (Yes, the “1-dimensional” bit means they “play nicely” with Series and vice-versa!)
e Comma-separated values
e Square brackets
e You can't see it, but implied “item numbers” ALWAYS 0, 1, 2, 3

O (The ‘“implied item numbers” can be used to “select” certain items out of the list.)

... in order.

Hands-On

https://link.stthomas.edu/sfpy201810-123
(remember to “fork™ it when you open it)

https://link.stthomas.edu/sfpy201810-1 23 = COmPUte |nitia|S 3A

1. At the end of the program, add: e , Do you see the output below?

. . Problems? (Remember: chat check)
serlfirst = dfl1['First'].str[0]

serllast = dfl['Last'].str[0]
serlinitials = serlfirst + '. ' + serllast + '.'

What “data types” do you think are in the

. L “ser1...” variables? Rationale? Proof?
print(serlinitials)

e Psychoanalyze my variable names!

2. Run the code o What might you prefer?

e Could the code take fewer lines?
o If so, how, and why did | make it so long?

If we added print (d£1), would it show a
column with initials?
o (Feel free to try it after you guess)

o Ol dbWIMNKEFE O

> <0E®B

T nnO=200w
[J

dtype: object e Questions? (Remember: chat check)

3B
https://link.stthomas.edu/sfpy201810-1 23 = Add “SOI‘ted Sel‘ieS”

Initial
1. aas%ce out the final e . Do you see the output below?
print(serlinitials)

Problems? (Remember: chat check)
2. At the end of the program, add:

e Note that we added a new “Initials” column
serlinitsrt = serlinitials.sort_values() to the DataFrame in our variable df1, but
print (serlinitsrt) that we set it to the values of a “sorted”
dftliinitialst] = seriinitsct series of initials! (Rows 6, 5, 3, 0, 2, 1, 41)

3. Runthe code If we added print (df1):

o What order would the rows of df1 show
upin? 0,1,2...0r6,5,3...?

o Would the right initials be attached to the
right person?

B R NO WU O
<m:§cuf)§>'§>'
nORODOn:@

m (Feelfree to try it after you guess)

dtype: object e Questions? (Remember: chat check)

Yay! They're in the right order!

e [t must be that “Pandas index magic”

Id First Last Email Company Initials
0 5829 Jimmy Buffet jb@example.com RCA J. B
1 2894 Shirley Chisholm sc(@example.com United States Congress S. C
2 294 Marilyn Monroe mm@example.com Fox M. M
3 30829 Cesar Chavez cc@example.com United Farm Workers C. C
4 827 Vandana Shiva vs@example.com Navdanya V. S
5 9284 Andrea Smith as@example.com University of California A. S
6 724 Albert Howard ah@example.com Imperial College of Science A. H

3C
https://link.stthomas.edu/sfpy201810-123 = Add “SOI‘ted LiSt” |nitia|S

1. Backspace out any print (serlinitsrt) or e , Do you see the output below?
print (df1l)
2. At the end of the program, add:

Problems? (Remember: chat check)

e Note that we overwrote the “Initials”

listlinitsrt = list(serlinitsrt) column of the DataFrame in our variable
dfl['Initials'] = listlinitsrt df1, with “simple list” copy of what was in
print(listlinitsrt)

our “alpha-sorted initials” Series. Lists are

always “indexed” a simple “0, 1, 2...”
3. Run the code

[lA H.' A S.' Ke: c.' 'J B.' |fWewel’etoaddtheCOdeprint(dfl)Z

M. M.' , 'S. C." , 'V. S.']) Would the rlght initials be attached to the
right person?

m (Feelfree to try it after you guess)

e Questions? (Remember: chat check)

Oh no! We botched the order!

Id First Last Email Company Initials
0 5829 Jimmy Buffet jb@example.com RCA A. H
1 2894 Shirley Chisholm sc@example.com United States Congress A. S
2 294 Marilyn Monroe mm@example.com Fox c. C
3 30829 Cesar Chavez cc@example.com United Farm Workers J. B
4 827 Vandana Shiva vs(@example.com Navdanya M. M
5 9284 Andrea Smith as@example.com University of California S. C
6 724 Albert Howard ah@example.com Imperial College of Science V. S

e |[t's still “Pandas index magic,” but our “list” looks like this:
['A. H.', 'A. S.', 'C. C.", 'J. B.'", 'M. M.', 'sS. C.'", 'V. 8."]
e Inthelist, “A.H.” is “#0” instead of “#6”.

So Pandas put it in “row #0” instead of “row #6.”
o Takeaway: Series & Lists are both 1-D and can be used somewhat interchangeably, but not
they’re not literally the same thing.

Lucky Us

e \We never overwrote our actual CSV file.

Run
Nope))
Backspace

Type)

e Pro Tip: Never .to csv(..) to the same file you .read csv () from

More Hands-On

Stay in your current “bunk”

3D
https://link.stthomas.edu/sfpy201810-1 23 = Sort d Wh0|e DataFrame

1. Backspace out all the code we just wrote. Leave all the .read csv(..) and such.

2. At the end of the program, add:

df3sorted = df3.sort values(by=['D.O0.B.'], ascending=[True])
print (df3sorted[['First',6 'Last','D.0.B."']]) « (note the DOUBLE square brackets!)

3. Run the code.

First Last D.O.B.
]] Quintina Lean 10/14/1963
e \We were trying to display people from oldest Kata Windus 10/4/1991
to youngest. Yuri Dalton 11/12/1980
. Corny Noller 12/13/1990
D hat? —
’ 'd we do that Salli Broxup 12/3/1991

o If not, what did we actually do, and
conceptually, what might help?

Mata Pierrepont 8/19/1970
Othelia Eastbury 8/4/1955
Pansy Mallya 8/4/1955
Doretta Herche 9/21/2010

B do U ONWOR

e Problems? Questions? (Remember: chat check)

Interpreting “D.0O.B.” as a date: 2 approaches

Tell .xread csv(..) tointerpret it as a date

Pros:

e Short & sweet if just exploring

e Auto-fixes “D.0.B.” to YYYY-MM-DD for
.to_csv (..) if that's okay

Cons:
e Have to fix “D.0O.B.” back before
.to_csv (..) if we liked m/d/yyyy

Add “DOBdate” column, sort on
“DOBdate,” don’t . to_csv(..) “DOBdate”

Pros:

e More granular control
o e.g. “timezone” plugins that help convert a
“local” timestamp to a “UTC” timestamp
without tripping over Daylight Svgs. Time

Cons:
e More lines of code

We don't always need a sortable date

e Not doing anything to D.O.B.

e Grouping by D.O.B. (as long as it’s distinct, it'll do)

3E
https://link.stthomas.edu/sfpy201810-1 23 = SOI‘t d DataFrame by date

1. Don’t erase any code from the last exercise — we’re going to fix code above it so that it'll work right.

2. Near the top of our code, find the df3 = pandas.read csv(..) line and, right after the word
‘object,” add , parse dates=['D.0.B.'] (with the leading comma) so that the line ends up
looking like this:

df3 = pandas.read csv('https://(..long URL here.) .csv', dtype=object, parse dates=['D.0.B.'])

3. Run the code.

First Last D.O.B.

) 6 Othelia Eastbury 1955-08-04

e Are you seeing people sorted old->young? q 7 Pansy Mallya 1955-08-04
1 OQuintina Lean 1963-10-14

™ VVe(ﬂdthe‘ﬂStapproaCh”_ 5 Mata Pierrepont 1970-08-19
. 3 Yuri Dalton 1980-11-12

o Note that the DOB looks different (now 5 Corny Noller 1990-12-13
YYYY-MM-DD) 8 Kata Windus 1991-10-04

0 Salli Broxup 1991-12-03

e Problems? Questions? (Remember: chat check) 4 Doretta Herche 2010-09-21

Treat-filled Q&A!

(Instead of a break yet — sorry.)

Useful yet?

Imagine you've already mastered what you've seen.

Sorting rows, adding/discarding columns, discarding/keeping duplicate
rows, counting unique/duplicate rows & values...

Any “Python beats Excel” use cases yet?
You won't hurt my feelings!

(Remind me to repeat for online & read chat)

| ecture:
“Column” Actions

(No need to memorize — we’ll practice)
[[102 breakpoint-ish (2:20)]]

Selecting specific columns of a DataFrame

e You've already seen this “bracket notation.”

o yourDataFrameHere['SomeColumnName'] is an expression that produces a new
“Series” representing that column. e.g.

dfl['First']

o yourDataFrameHere[['Coll', 'Col2','Col3']] is an expression that produces a
new “DataFrame” representing just those columns. e.g.

df3sorted[['First','Last’','D.0.B."']]

m Pro Tip: Useful for “peeking” at “wide” tables, like .head () is with “long” tables.
e (Yes,df3sorted[['First',6 'Last','D.0.B.']].head() works!)

m Note: ['Coll', 'Col2','Col3'] isjusta standard Python “list” expression.

Modifying specific columns of a DataFrame

e “DataFrame-Bracket” notation has special behavior on the left side of an =

o dfl['First'] = 'Anush' will modify the contents of the DataFrame stored in the
variable “df1,” overwriting everyone’s first name to “Anush.”

m Or, if there is no column named “First,” this statement adds a “First” column and
populating it all the way down with “Anush.”

e Very handy for, say, adding “Campaignld” to a CSV file.
e \We leveraged this earlier with df1['Initials'] = ..

o Double-bracket notation is similar, except erroring instead of adding nonexistent columns.
m dfl[['First',6 'Last']] = ['Anush', 'Lopez'] will turn everyone into an “Anush Lopez”

m dfl[['First',6 'Last']] = 'Kelly' will turn everyone into a “Kelly Kelly”

DataFrame-Bracket Notation Power Use

e We did this in several steps with the “initials” exercise, saving off our
intermediate “series” into variables for legibility. Here’s a similar one-liner.

dfl1['Full'] = dfl['Last'] + ', ' + dfl['First']
e dfl['Full'] is serving the special function of modifying “df1”

e dfl['Last'] anddfl['First'] are just expressions that produce
brand new “Series”-typed results (typing them doesn’t modify “df1”)

Adding empty columns (e.g. to fill in later)

yourDF ['NewColumnName'] = None

e The “None” keyword, with a capital N, Python’s special “NULL" value.

o With Pandas, you might also see “NaN”. Same idea.
Technically different; | haven'’t had to care.

m Both reply “True” to .isnull ()

m Both write a blank cell when exporting to CSV

Renaming columns (e.g. “ld”->“Contactld’)

yourDF . rename (columns={'01dl"': 'Newl',6 '01ld2': 'New2'})

e This expression merely produces a new copy of “yourDF” with the column
names “Old1” & “Old2” replaced by “New1” & “New?2,” respectively.

o Can be handy with .merge (...) (VLOOKUP) operations

e To actually change the contents of “yourDF,” do either of these statements:

0 yourDF.rename (columns={'0ldl': 'Newl',6 'O1ld2':'New2'}, inplace=True)

0 yourDF = yourDF.rename (columns={'0ldl': 'Newl',6 'O1ld2':'New2'})

Selecting “all but” specific columns

yourDF .drop (columns=['Unlovedl',6 'Unloved2'])

e This expression merely produces a new copy of “yourDF” with all columns
except “Unloved1” & “Unloved2.”

o Older versions of Python like in our “Codebunk” environment require one of these instead:
m yourDF.drop(['Unlovedl', 'Unloved2'], axis='columns')

m yourDF.drop(['Unlovedl', 'Unloved2'], axis=1)

e To actually change the contents of “yourDF,” do either of these statements:

0 yourDF.drop (columns=['Unlovedl', 'Unloved2'], inplace=True)

0 yourDF = yourDF.drop (columns=['Unlovedl', 'Unloved2'])

Expressions vs. Statements review

e Note how an “expression” (something that is something — it doesn’t do
anything) can suddenly become a “statement” (something that does
something — it isn’t a value that you can print (...)) with a teeeeeny bit of
code like “, inplace=True’.

e |If your program is acting weird, keep this in mind and:

KEEP Run p)
CALM Nope

INS?;ECT Backspace

YOUR Type)
DATA TYPES

Series Transformations

e Every “Series” inherently has a bazillion . somethingOrOther... operations
that can follow directly after it (no space).

o Some of them aggregate the cells of the Series (e.g. “max” or “sum” type operations)
o Most of them iterate over every cell in the Series, doing the same thing to each one.

m We used one of these earlier to grab “character #0” of df1’s “Last” column:
dfl['Last'].str[0]

m Typically, they produce a new Series that’'s an altered copy of the input Series.

m Some of them will error out if they hit a cell of a nonsensical “data type” for the operation.

Series Transformations

e Seriously. There are hundreds.
https://pandas.pydata.org/pandas-docs/stable/api.html#series

o Just the several dozen text-manipulating ones:
https://pandas.pydata.org/pandas-docs/stable/api.html#string-handling

e Under construction by me: a “frequently useful” shortlist at:
https://pypancsv.qgithub.io/pypancsv/commonoperations/

Series Transformations — Boolean Series

e Probably the most useful kind of “series transformations” are the ones that
produce a new Series full of True/False (“Boolean”) values.

e The “False” values in such Series let you “skip over” corresponding rows
of a DataFrame or another Series while performing some action.

Hands-On:

More Row Filters

Re-visit https://link.stthomas.edu/sfpy201810-123
anew
(remember to “fork™ it when you open it)

We've done a few filters w/o
“True/False Series”

So far, we've done:
.head(...)

.tail(...)
.drop duplicates(..)

3F
https://link.stthomas.edu/sfpy201810-123 - Identify redundant rows

1. At the end of the program, add: e , Do you see the output below?

Problems running? (Remember: chat check)
print (df3.duplicated (keep=False))

e \What “data type” is this? Rationale?

2. Run the code Proof?
0 False e keep=False makes this operation return
& False True for a row if it's “like” any other row.
2 False
3 False e We didn’t specify any columns, so it’s
4 False looking at all columns (“pure duplicates”).
5 False)
6 False e Questions? (Remember: chat check)
7 False
8 False
dtype: bool

https://link.stthomas.edu/sfpy201810-123 - Identify redundant rows

1. Change your previous line to: 0 False
1 False

) . 2 False

print (df3.duplicated(['Address','D.0.B.'], keep=False))

3 False

R h 4 False

2. un the code 5 False
6 True

e Do you see the output? 7 True
8 False
e Problems? (Remember: chat check) dtype: bool

e Itlooks like “row 6” & “row 7” have a “twin roommate” somewhere in the
data set. (Probably each other, since they’re the only 2...)

e \What if this were 8,000 rows? How would we know if any were “True?”
o Ideas? (Hint: “Power of One”)

e Questions? (Remember: chat check)

3G

https://link.stthomas.edu/sfpy201810-123 = COunt redundant row 3H

1. Change your previous line to:

print (df3.duplicated(['Address','D.0.B.'], keep=False) .sum())

2. Run the code

e Do you see the number 2 as output?

e Problems? (Remember: chat check)

e What was that black magic?
o ldeas?

e Questions? (Remember: chat check)

Magician’'s Secrets: Do Duplicates Exist?

df3.duplicated(['Address','D.0.B.'], keep=False) .sum()
e df3is a dataframe, which means it has a .duplicated(..) operation.
e The output of that operation is a True/False-filled Series.

e All Series have a .sum () operation that will add up the value of all of their
cells ... presuming those cells are numeric.

e It turns out that Pandas is happy to treat True/False as 1 & 0, meaning that
the “sum” is a record-count of “True” values in the series.

Yay — now we can quick-check whether duplicates exist in an 8,000-row CSV file.

Now let’s see them.

3l

https://link.stthomas.edu/sfpy201810-123 = DiSplay redundant rows

1. Backspace out your code from the last exercise.
2. Add the following code to the end of the program:

ser3isdup = df3.duplicated(['Address','D.0.B.'], keep=False)
print (df3[ser3isdup])
Id First Last D.O.B.
3. Run the code 6 32443 Othelia Eastbury 8/4/1955
7 22082 Pansy Mallya 8/4/1955

Address
87834 Lyons Terrace, Rainy, OR
87834 Lyons Terrace, Rainy, OR

e Do you see the output?

e Problems? (Remember: chatcheck)

e \What “data type” is this? Rationale? Proof?

e Have we seen this someDataFrame[..] syntax before?

e Questions? (Remember: chat check)

Lecture:
"Row Filter” Actions

You just saw a NEW flavor of “bracket notation.”

o yourDataFrameHere[someTrueFalseSeriesWithTheSameRowIDs] is an expression
that produces that produces a new “DataFrame” representing just the rows where
someTrueFalseSeriesWithTheSameRowIDs was “True.” 2 examples:

m df3[df3.duplicated(['Address','D.0.B.'], keep=False)]
m df3[ser3isdup]

o | prefer #2! Yay, variables.

Because any yourDF [someSeries] expression is itself a DataFrame, that
means it foo has “standard bracket notation” for “column selection.”

o df3[ser3isdup] ['First'] is an expression that would give us a new 2-item “Series”,
with row IDs 6 & 7, showing “Othelia” & “Pansy.”

o df3[ser3isdup] [['First', 'Last']] is an expression that would give us a new 2-
column, 2-row “DataFrame,” with row IDs 6 & 7, showing “Othelia Eastbury” & “Pansy Mallya.”

o You can’t [] forever like that. At some point, Python will yell at you for being ambiguous.

m However, you often can “checkpoint” what you’ve made by saving it into a variable and
then pick up from there as usual.

o Python will yell at you if you try to put either of these onto the leff-hand side of an equation.
Unfortunately, they’re not for selectively editing cells of a DataFrame.

If Pandas doesn’t yet “all look alike” enough...

o df[someTrueFalseSeriesSameLength] [someColNameOrList] —
“DataFrame” w/ rows where T/F series=True; cols. as specified.
Not editable left of “=". SdIkf ...

o df3[ser3isdup] [['First',6 'Last']] gives a 2-column, 2-row “DataFrame,” w/ row IDs
6 & 7, showing “Othelia Eastbury” & “Pansy Mallya.”

e There's an unrelated d£[..][...]. Yay. (& &

0 df[someSingleColName] [someRowIdOrList]
— “Series” of specified col., w/ items indicated by row ID. Editable left of “=" (Level 102)
m e.9.df3['Last'][[5,7]] — 2-item “Series,” #5: “Pierrepont” & #7: “Mallya”
0 df[someSingleColName] [someTrueFalseSeriesSamelLength]
— “Series” of specified col., w/ items where T/F series=True. Editable left of “=" (Level 102)
m e.0.df3['Last'] [ser3isdup] — 2-item “Series,” #6: “Eastbury” & #7: “Mallya”
o Doesn’t work w/ column name list (will yell at you).
Not editable if column doesn'’t exist yet in d£ (will yell at you).

Door Prize: A Script!

(And then a break)

A real-life script “finddupes.txt”

e | like to save my favorite Python scripts for future reference. Here's one:

import pandas
pandas.set_option('expand frame repr', False)
filename = 'c:\\example\\sample.csv' # Edit this before running
dupeColumns = ['coll',6'col2',6 'col3'] # Edit this before running
df = pandas.read csv(filename, dtype=object)
isDupeSeries = df.duplicated(dupeColumns, keep=False)
isFirstDupeSeries = df.duplicated(dupeColumns, keep='first')
print(str (isDupeSeries.sum()) + ' dupes in ' +
str (isFirstDupeSeries.sum()) + ' groups in ' +
str(len(df)) + ' rows')
print ('\r\n---The duped rows are:---")
print (df [isDupeSeries])
print ('\r\n---The "dupe keys" are:---')
print (df [isFirstDupeSeries] [dupeColumns])

Questions? (Chat room?)

10-Minute Break

Questions? (Chat room?)

Lecture: “Starts With” Row Filtering

Y YV VYV

Y YV VY

print('--What is in "Last" for each row?--") --what is in "Last" for each row?--
lastNameSeries = df1['Last’] — Buffet

0
print(lastNameSeries) % Ch;z:?l’g
print(*--For each row, does "Last" start w/ "C" or "S"?--") i Cgﬁ\;s;
lastCSBooleanSeries = lastNameSeries.str.startswith('C’) | lastNameSeries. str.startswith(‘S’) 5 smith
print(lastCSBooleanSeries) 6 Howard

Name: Last, dtype: object
--For each row, does "Last" start w/ "C" or "S"?7--

False
&

0

1 True

2 False KEEP
3 True CALM
4 True

5

6

N

lastCSdf = df1[lastCSBooleanSeries]
lastCSdf.to_csv('C:\\yay\\out lastcs.csv', index=False, quoting=1)

AND
True INSPECT
False YOUR

ame: Last, dtype: bool DATA TYPES

A B C D ‘ E

1 Id First Last Email Company

2 2894 Shirley Chisholm sc@example.com United States Congress

3 30829 Cesar Chavez cc@example.com United Farm Workers

4 827 Vandana Shiva vs@example.com Navdanya A B c b) E

5 9284 Andrea Smith as@example.com University of California e —
3 2894 Shirley Chisholm sc@example.com United States Congress
5 30829 Cesar Chavez cc@example.com United Farm Workers
6 (827 Vandana Shiva vs@example.com Navdanya

oy

9284 Andrea Smith
PEIEEY ™ m o

as@example.com University of California
P L L iedcol s

Hands-On:

Fancier Row Filter

https://link.stthomas.edu/sfpy201810-filter
| (remember to “fork” it when you open it) Y|

https://link.stthomas.edu/sfpy201810—f| lter1

e Any problems running it?
o (Remind me to check the chat)

https://link.stthomas.edu/sfpy20181 O-ﬁ I te r 1 4 B

Hands-On: Together (come up to my computer!), we’ll edit the code so that
e Instead of doing:

o ‘Display all columns, but only rows where “Last” starts with capital “C” or “S™
e It will do:

o ‘Display all columns, but only rows where “Company” case-insensitively ends with “a” or
where “Id” is less than 800

e Hint: Every Series has the following operations:

o .str.lower () (the resulting output is also a Series, full of text-typed data)
o .str.upper () (the resulting output is also a Series, full of text-typed data)
o .str.endswith (..) (the resulting outputis also a Series, full of True-False data)
o .astype ('int') (the resulting output is also a Series, full of integer-typed data)

FOR POSTERITY: Copy/paste our code below.

“102” taster: editing cells based on existing data

» theseRowsLastNamesStartWithCapitalS = df1['Last’].str.startswith('S")

» theseRowsHaveA4InTheirld = df1['|d"].astype(str).str.contains(‘4’)

» dff['Last'][theseRowsLastNamesStartWithCapitalS] = 'aaa’

> dff['Email‘][theseRowsHaveA4InTheirld] = ‘bbb’

» dff['New1] = None

» df1.loc[theseRowsLastNamesStartWithCapitalS, 'New1'] = 'ccc’

» dff['New2] = None

» df1.loc[theseRowsHaveA4InTheirld, ‘New2’] = 'ddd’

> dff['New3’] = 'eee’

» df1 = df1.drop(['ld’, ‘Company’], axis=1)

» df1.to_csv('C:\\yay\\out complexupdates.csVv', index=False, quoting=1)

A B C D E F B C D
1 First Last Email Newl New2 New3 ;‘\L’ . ;i:rtny Il;ausftfet fb'gzxample_com Eg/’:pa
2 lJimmy Buffet jb@example.com eee 3 F 4 shirley Chisholm Sc@example.com — United Stadsffongress
3 Shirley Chisholm bbb ddd eee 5 S e
4 Marilyn Monroe bbb ddd eee 6 Vandana Ghiva > vs@example.com Navdany
7 Pk4 Andrea &@example.com > Universify of CalKornia

5 Cesar Chavez cc@example.com eee 8} Albert Howard _ati@examplecom> Imperifl College \science
6 Vandana aaa vs@example.com ccc eee
7 Andrea aaa bbb ccc ddd eee
8 Albert Howard bbb ddd eee

R

https://link.stthomas.edu/sfpy201810-democomplexcellupdates

“102” taster: Multi-column VLOOKUP

» betterdf2 = df2.rename(columns = {{LastName’:'Last’, ‘FirstName’:'First’, 'Em':"Email’})
» outermergedf = df1.merge(betterdf2, how="outer’, on=['Last’, 'First'], suffixes=("_csv1’,’ csv2'))
» outermergedf.to_csv('C:\\yay\\out outermerge.csv’, index=False, quoting=1)

A B | C D | E _ B I G | H)
d First Last Email_csv1l Company Personld Email_csv2 FavoriteFood
5829 Jimmy Buffet jb@example.com RCA
2894 Shirley Chisholm sc@example.com United States Congress

1
2
3
4 294 Marilyn Monroe mm@example.com Fox x934 mm@example.com Carrots
5 30829 Cesar Chavez cc@example.com United Farm Workers
6 827 Vandana Shiva vs@example.com Navdanya 02e vs@example.com Amaranth
7 9284 Andrea Smith as@example.com University of California 9e84f as@example.com Kale
8 724 Albert Howard ah@example.com Imperial College of Science 8xi ahotherem@example.com Potatoes
9 Shirley Temple 983mv st@example.com Lollipops
10 Donald Duck k28fo dd@example.com Pancakes
A B C D E | A B € D E
e ema 1 [personid {Eatha B GNameEm FavoriteFood
F 5829 Nm}"“’ B”TfEt jb@example.com RC’_A 2 983mv Shirley Temple st@example.com Lollipops
* 131';21914 i/'::;yn :\:Aht‘,snhr‘;:" :ﬁg:;z:ef:lm LJ:)l(tedStatesCongress % 3 9e84f Andrea Smith as@example.com Kale
’ V! ple- . 4 k28fo Donald Duck dd@example.com Pancakes
5 30829 Cesar Chavez cc@example.com United Farm Workers K
% 6 827 Vandana Shiva vs@example.com Navdanya K 5 x934 Marilyn Monroe mm@example.com Carrots
* 7 :9284 Andrea Smith as@example.com University of California * 6 8 Albert Howard ahotherem@example.com Potatoes
Y 8 724 Albert Howard ah@example.com Imperial College of Science k7 02 Vandana Shiva vs@example.com Amaranth

Advanced Demo: “generators,” part 1

e Weird but concise code for:
“‘Show ‘mydf,’ just columns that don’t start with the phrase ‘Program.

LR

A B €
1 Id First Name Last Name Progr:
2 | 29 John Doe
3 872 lJane Dill
4 ‘ 75 Mick Jag

» colsThatStartWithProgram = [x for x in mydf.columns if x.startswith('Program')]

» mydf = mydf.drop(colsThatStartWithProgram, axis='columns')
> mydf.to _csv('C:\\yay\\out generatorl.csv', index=False, quoting=1)

A B C
Id First Name Last Name
2 29 John Doe
3 872 lJane Dill
4 | 75 Mick Jag

1

https://link.stthomas.edu/sfpy201810-demogenerator1

Advanced Demo: “generators,” part 2

e \Weird but concise code for:

“‘Rename any column that starts with ‘Program’ to ‘Course..."”

VVVY

A B C G
1 Id First Name Last Name<ProgramAcrobatic: mBasketWeavyi ‘ogramComputerProgrammin; QEOéramScubaDivinE)
2 29 John Doe Registered Registered
3 872 Jane Dill Registered Registered
4 | 75 Mick Jag Registered Registered
colsThatStartWithProgram = [x for x in mydf.columns if x.startswith('Program')]
renameKey = {x:x.replace('Program', 'Course', 1) for x in colsThatStartWithProgram}

mydf = mydf.rename (columns=renameKey)
mydf.to csv('C:\\yay\\out generator2.csv', index=False, quoting=1)

"

A B © D E F G
1 Id First Name Last Name CourseAcrobatics CourseBasketWeaving CourseComputerProgramming CourseScubaDiving
2 29 John Doe Registered Registered
3 872 Jane Dill Registered Registered
4 | 75 Mick Jag Registered Registered

https://link.stthomas.edu/sfpy201810-demogenerator?

102: “State code vs. Label typo-hunt”

e Let's say you have a 2-column table of “Unique IDs” and “Country Names.”
e You want to dummy-check that no country is listed twice.
e Let's peek at https://link.stthomas.edu/sfpy201810-demostatetypo

uniqueColBPerColA = someDF.groupby(['coINameA'])['coINameB'].nunique()
print(uniqueColBPerColA[uniqueColBPerColA>1])

Links & Resources

e https://tinyurl.com/pypancsv - All my notes, slides, etc. so far E E

o Slides (once | get them online)
o Examples and exercises
o “Commonly Used Operations”
m (Under development ... | promise it'll get better!)

[=]5

e https://tinyurl.com/PyPanCsvWinlde - getting an “IDE” onto your computer

e hitps://pbpython.com — “Practical Business Python”
o (as with many blogs, might be best to start by browsing older posts)

