
Python for Spreadsheet
Manipulation 101

© “pypancsv” 2018

How I Found Python

Excel vs/and Python
(Today, just Python, for practice!)

Syllabus

101 (today)
● “Hello, World!”
● Programmer-speak
● Sample Code!

○ Import/Export CSV/XLSX

○ Counting & displaying things

○ Duplicates & uniques

○ Sorting rows

○ Adding/dropping columns

○ Date-time gotchas

○ Selectively editing cells

○ Basic matching / VLOOKUP

🌊🌊 Yes, it’s a lot!🌊🌊
1. Watch me EXPLAIN so:

- “Cool! 🌟😍❤”
- Recognition when Googling

2. 👍 – keep up:
- To reinforce the experience

102 (future)
● Anything we miss today
● More matching/VLOOKUP problems
● More “hard problems”
● BYO problem & sample data; let’s solve it!

Links

● Every link will start with https://link.stthomas.edu/sfpy201810- ...

● Struggling to type fast enough? Code snippets at:

○ https://link.stthomas.edu/sfpy201810-info
■ (Online folks: you’re already here – it’s where you got the webinar link.)

○ “Hands-on” slides will indicate which exercise from this “info sheet” we’re
on using an orange cloud with a number in it!

3F

Let’s Run A Program
https://link.stthomas.edu/sfpy201810-hello

https://link.stthomas.edu/sfpy201810-hello

● Running Codebunk examples (“fork” + don’t log in)
● Any problems running it?

○ (Remind me to check the chat)

1A

https://link.stthomas.edu/sfpy201810-hello

● Change Hello World to Yay Us and run your code.
● Any problems? Does “Yay Us” show up?

1B

Code Fragment Jargon & IDEs

● Expression: code that is a value.
Like a single Excel cell’s formula.

○ 'Hello World'
○ 'Yay Us'
○ type('Hello World')
○ (1 + 1) / 5
○ 'Amanda'.startsWith('Z')

● Statement: code that does.
Smallest runnable program.
Statement : Program :: Sentence : Essay

○ print(SOME EXPRESSION HERE)
○ cool_variable_Name = SOME

EXPRESSION HERE

● Operat(-ion/-or) / Function / Method:
expression glue (→expression or →statement)

○ +
○ print(…)
○ type(…)

● Comments: code fragment for humans
○ # One-line comment
○ '''

Multi-line comment:
For really long comments!
'''

● IDE: text editor with a “Run” button
○ Install & run on a computer you control for

corporate data

Data Types

● Data Type: dimension & kind
○ 0-D (single points of data)

■ Text? Number? True/False (Boolean)? Blank (Null)?
○ 1-D collections (lists of 0-D points)

■ Row-like (meant to represent 1 “record”)?
■ Column-like (meant to represent 1 “field” across multiple records)?

● If column-like, what type (text/number/Boolean/etc) are the 0-D “data points”
within this list?

○ 2-D collections (tables of 1-D row-lists & 1-D column-lists intersecting at 0-D points)

Why “Dimension” Matters

● “Dimension” & “Kind” work together to constrain what “operations”
we can do to data. Can we …

+, - ? 0D #; 0D text if “+” means “concatenate”

fetch 1st letter? 0D text data

<, == ? 0D number, 0D text …

SELECT?
• fetch “item #3” (2D→1D; 1D→0D)
• fetch “odd-numbered” items (2D→2D; 1D→1D)

1D & 2D data

ITERATE? (inspect each item, potentially altering its value)
• multiply each by 3
• all-caps any item that starts with a P

1D & 2D data

AGGREGATE? (combine all the items together into just one value)
• max
• sum

1D & 2D data

♥ Data Types = Easier “Expression” Writing
● Tricky #1: Fewer hints about “expression operations while you program

(in online manuals, though)

● Tricky #2: Not just “around” & “between” operations like Excel’s
ISNUMBER("apple") & 1+4

○ Also “after” operations, connected by a period, like "Banana".lower()
○ Worse: “after” operations in Pandas w/ random extra period, like ….str.lower()
○ Or: “after” operations in Pandas that launch straight into brackets, like ExpressionHere[…]

Q: Panic? 😱😓😭
A:

Confused what 9 - 4 < 2 does? Inspect smaller problems!
● print(…) & print(type(…)) w/ 9 - 4, 5, 2, 5 < 2, False, etc.
● Copy/paste smaller problems back together, just like you do with big Excel formulas

● print(ExpressionHere)
● print(type(ExpressionHere))
● CoolVariableName = ExpressionHere
● print(CoolVariableName)
● print(type(CoolVariableName))

Coding Culture Shock: Not Visual

● Working “blind” (vs. Excel) 😱😓😭

Useful tricks:

● “Print” statements
(puts otherwise-invisible data on the screen) 😂

● Nicknaming intermediate “expression” outputs (“setting variables”) for later
use in code
(like “wet” & “dry” baking bowls)

● “Comments” (notes to self)

No shame in “programming by Google”

Let’s Try That!
• Stay on your current “code bunk.”

Already close it? Re-“fork” https://link.stthomas.edu/sfpy201810-hello

• Backspace or “comment out” your old code
(Who can guess how we “comment out” code?)

Type and run, one at a time. Surprises?

• print('Hello World')
• print(type('Hello World'))
• print(5)
• print(type(5))
• print(None)
• print(type(None))
• print(False)
• print(type(False))
• print(3 * 2.5 * 4)
• print(type(3 * 2.5 * 4))
• print(3 * 2.5 * 4 < 1)
• print(type(3 * 2.5 * 4 < 1))
• myFirstVariable = 3 * 2.5 * 4
• print(myFirstVariable)
• print(type(myFirstVariable))
• print(myFirstVariable < 1)
• print(type(myFirstVariable < 1))
• print('Bye!')

● Boldface: The “outermost expression”
within the “print(…)” operator

● Underline: The expression we’re
interested in seeing the “value” or the
“data type” of

1C

Answer Key. Surprises? (Chat room, surprises?)
print('Hello World')
print(type('Hello World'))
print(5)
print(type(5))
print(None)
print(type(None))
print(False)
print(type(False))
print(3 * 2.5 * 4)
print(type(3 * 2.5 * 4))
print(3 * 2.5 * 4 < 1)
print(type(3 * 2.5 * 4 < 1))
myFirstVariable = 3 * 2.5 * 4
print(myFirstVariable)
print(type(myFirstVariable))
print(myFirstVariable < 1)
print(type(myFirstVariable < 1))
print('Bye!')

Hello World
<class 'str'>
5
<class 'int'>
None
<class 'NoneType'>
False
<class 'bool'>
30.0
<class 'float'>
False
<class 'bool'>
{{{{{nothing prints out for this line}}}}}
30.0
<class 'float'>
False
<class 'bool'>
Bye!

Expression-Nesting Pop Quiz

● "Angela".startsWith("P")
● 3 * 2.5 * 4 < 1

How many expressions can you
see in each example above?

Getting really good at this game will help you
“backspace & replace” useful code you find on
the internet, even if you don’t understand it!

Questions? (Chat room?)
(Trouble getting code to run?)

Let’s look at a CSV file
using Python

https://link.stthomas.edu/sfpy201810-readcsv

sample1.csv

● 7 rows, 5 columns (people & employer)

https://link.stthomas.edu/sfpy201810-readcsv

● 🍴 (remember to “fork” it if it won’t run!)🍴
● Any problems running it?

○ (Remind me to check the chat)

2A

Excel, too!

● In addition to pandas.read_csv(…), there’s also
pandas.read_excel(…)

● When we finish crafting a Pandas “DataFrame” that we like and saving it into
a variable called, say, “outputdf,” we can do:

○ outputdf.to_csv(…)
○ outputdf.to_excel(…)

sample2.csv

● 6 rows, 5 columns (people & favorite food)

https://link.stthomas.edu/sfpy201810-readcsv - Edit the Code (CSV 2)

Change all but the first occurrence of df1 to df2 and re-run.
● There are 19 changes to make (the last 19 lines of the program)
● Don’t change the one at the very top that starts with df1 =

Review:
● Are you seeing people and their favorite foods?
● Is the total row count down from 7 to 6?
● Any problems? Questions?

○ (Remind me to check the chat)

2B

sample3.csv

● 9 rows, 5 columns (people & DOB & address)

https://link.stthomas.edu/sfpy201810-readcsv - Edit the Code (CSV 3)

Change all but the first occurrence of df2 to df3 and re-run.
● There are 19 changes to make (the last 19 lines of the program)
● Don’t change the one at the very top that starts with df2 =

Review:
● Are you seeing people and their addresses?
● Is the total row count up from 6 to 9?
● Any problems? Questions?

○ (Remind me to check the chat)

2C

10-Minute Break

Let’s get a little bit harder
3 exercises, same code base.

(If you closed it, re-visit
https://link.stthomas.edu/sfpy201810-readcsv

and “fork” it as soon as the page loads.)

https://link.stthomas.edu/sfpy201810-readcsv - Edit the Code

1. “Comment out” the whole print(…) section of code – all 19 lines.
○ Do this by adding 3 single quotes in a row, ''', both before and after that section of code.

2. At the end of the program, add the following new line of code:
print(df3['Address'].unique())

3. Run the code

Review:
● Do you see the following output?

○ ['305 Grover Lane, Sunny, AK' '800 Golden Leaf Street, Snowy, NM' '87834 Lyons
Terrace, Rainy, OR' '98 Paget Trail, Cloudy, WY']

● Any problems? Questions?
○ (Remind me to check the chat)

2D

https://link.stthomas.edu/sfpy201810-readcsv - Edit the Code

1. At the end of the program, add the following new line of code:
print(len(df3['Address'].unique()))

○ Tip: It’s like the line before it, only with len(…) inside the print(…)

2. Run the code

Review:
● Do you see the following output right below your list of addresses?

○ 4

● Any problems? Questions?
○ (Remind me to check the chat)

2E

Useful things to wrap around ….unique(…)

● len(…) – gives you a count of the unique values
● list(…) – useful when you want to copy/paste the output to your clipboard

with commas between the values
● sorted(…) – the same output as list(…), only case-sensitive alpha order
● sorted(…, key=str.lower) – the same output as sorted(…), only

case-insensitive alpha order

https://link.stthomas.edu/sfpy201810-readcsv - Edit the Code

1. “Comment out” the last 2 lines of code you added.
○ Do this by putting a # at the beginning of each of the 2 lines of code.

2. At the end of the program, add the following 3 new lines of code:
print(df3.drop_duplicates(['Address'], keep=False))

print(len(df3.drop_duplicates(['Address'], keep=False)))
print(len(df3.drop_duplicates(['Address','D.O.B.'], keep=False)))

3. Run the code
Review:
● Do you see…

○ First, the contents of “row 8” (really 9), which is the only person who lives alone in CSV 3?
○ Second, the number 1 (the # of rows w/ a unique address)?
○ Third, the number 7 (the # of rows w/ a unique address+DOB combo—i.e. no roomie twins)?

● Any problems? Questions?
○ (Remind me to check the chat)

2F

Note df3 was “reusable”

● .drop_duplicates(…) didn’t really do anything to df3 in that code

○ We were just print(…) -ing copies

● Know that there ARE ways to alter the contents of our variable “df3”

We did some neat stuff

● Read a CSV file off the world wide web into our program

● Displayed a copy of that CSV file on the screen in all its ugly glory

● Displayed just its “head” and “tail” (handy if it’s 3,000 lines long)

● Counted lots of things with “len(…)”

● Combined “len(…)” & “['Address'].unique()” into an address count

● Displayed just “unique-data” rows with “.drop_duplicates(…)”
○ .drop_duplicates(…) has other settings that allow us to leave in the first or last of any

duplicate rows, instead of suppressing all rows that have a duplicate.

If you can display a DataFrame, you can export it**

● If print(type(…)) displays <class 'pandas.core.frame.DataFrame'>, “…”
is an expression to which you can append .to_csv(…) or .to_excel(…)

○ Pro tip: the .to_csv(…) command gets lengthy.
Save your “DataFrame” to a “variable” as in the example below.

outputdf = df3.drop_duplicates(['Address'], keep=False)
outputdf.to_csv('C:\\myfolder\\myfile.csv', index=False, quoting=1)

** Not today. You’re running code online.

More Theory:
DataFrames, Series, & Lists – Oh My!

DataFrames & Series & Lists – oh my!

Data Type Comes With Dimension

DataFrame Pandas plugin 2-D (Table-shaped)

Series Pandas plugin 1-D (List-shaped)

List Python by default 1-D (List-shaped)

1-D AND 2-D data actions

● Select sub-members
○ (1-D: “select cells” / “select items”)

○ (2-D: “select columns”)

○ (2-D: “select rows”)

● “Sort” the data
○ (1-D: plain-old sort)
○ (2-D: sort entire “rows” after specifying “columns” whose cell contents will be used for sorting)

2-D data actions

● Adding a “column”
● Dropping a “column”
● Re-ordering “columns”
● Renaming a “column label”
● Importing from a spreadsheet file
● Exporting to a spreadsheet file

1-D data actions

● Editing the contents of cells/items based on other “corresponding” 1-D data

● Using “0-D”-specific operations on the contents of cells/items
○ .isin(…)
○ .notnull()
○ .str.startwith(…)
○ <
○ +

So? ● Programming is “working blind”
compared to Excel.

● When stuck, helpful to “think
like a computer” about what
you’re “really trying to do to
your data.”

Pandas Index

Pandas Index

● Pandas does a lot of its “inter-column” / “corresponding data” magic
based on row numbering, which it calls “indexing.”

● Usually safe to think of “indexes” as a “row number” or “row ID”
○ “Row ID” probably best. Get used to seeing:

■ “Missing” row IDs (0, 2, 6, 7)
■ “Out-of-order” row IDs (3, 0, 1, 2)

○ Know that more complicated “indexes” exist
■ “Named” row IDs ('983mv', '9e84f', 'k28fo', 'x934', '8xi', '02e‘)
■ Multi-level indexes (when doing advanced pivoting & grouping)
■ Technically, column names are also indexes

Visual Cues
DataFrames vs. Series vs. Lists

What “DataFrames” look like

● print(type(ExpressionHere)) displays <class 'pandas.core.frame.DataFrame'>
● print(ExpressionHere) looks something like:

● Nothing displayed below the last row
● Multiple data columns allowed. Inherently 2-DIMENSIONAL.
● “Data column” labels as high as they can go, right-aligned over data
● “Row IDs” at far left. 1) no label or 2) “lowered & left-aligned” if “named”

○ (“Named” happens when you use a special command to convert a data column into a “row ID”)

With generic row IDs With “named” row IDs With generic row IDs, sorted by LastName

FirstName LastName PersonId
0 Shirley Temple 983mv
1 Andrea Smith 9e84f
2 Donald Duck k28fo
3 Marilyn Monroe x934
4 Albert Howard 8xi
5 Vandana Shiva 02e

FirstName LastName
PersonId
983mv Shirley Temple
9e84f Andrea Smith
k28fo Donald Duck
x934 Marilyn Monroe
8xi Albert Howard
02e Vandana Shiva

FirstName LastName PersonId
2 Donald Duck k28fo
4 Albert Howard 8xi
3 Marilyn Monroe x934
5 Vandana Shiva 02e
1 Andrea Smith 9e84f
0 Shirley Temple 983mv

What “Series” look like

● print(type(ExpressionHere)) displays <class 'pandas.core.series.Series'>
● print(ExpressionHere) looks something like:

● “Name” (if applicable) & “Data Type of contents” displayed below last row
● Only 1 “data” column allowed. Inherently 1-DIMENSIONAL.

○ (“PersonId as ‘row number’” or “Column label as ‘row number’” don’t count as a “column” – they’re the “index”)

● No label at top for “data” column
● “Row IDs” still at far left. 1) no label or 2) “lowered & left-aligned” if “named”

○ (“Named” happens when you use a special command to convert a data column into a “row ID”)

“First Name” column “First Name” column
(with “named” row IDs)

Column w/ “Does this ‘First
Name’ cell start with ‘A’?”

Row “2”

0 Shirley
1 Andrea
2 Donald
3 Marilyn
4 Albert
5 Vandana
Name: FirstName, dtype: object

PersonId
983mv Shirley
9e84f Andrea
k28fo Donald
x934 Marilyn
8xi Albert
02e Vandana
Name: FirstName, dtype: object

0 False
1 True
2 False
3 False
4 True
5 False
Name: FirstName, dtype: bool

PersonId k28fo
FirstName Donald
LastName Duck
Em dd@example.com
FavoriteFood Pancakes
Name: 2, dtype: object

What “Lists” look like

● print(type(ExpressionHere)) displays <class 'list'>
● print(ExpressionHere) looks something like:

○ ['Shirley', 'Andrea', 'Donald', 'Marilyn', 'Albert', 'Vandana']
○ [False, True, False, False, True, False]
○ ['k28fo', 'Donald', 'Duck', 'dd@example.com', 'Pancakes']
○ ['PersonId', 'FirstName', 'LastName', 'Em', 'FavoriteFood']

● Single line. Inherently 1-DIMENSIONAL.
○ (Yes, the “1-dimensional” bit means they “play nicely” with Series and vice-versa!)

● Comma-separated values
● Square brackets
● You can’t see it, but implied “item numbers” ALWAYS 0, 1, 2, 3… in order.

○ (The “implied item numbers” can be used to “select” certain items out of the list.)

Hands-On
https://link.stthomas.edu/sfpy201810-123

(remember to “fork” it when you open it)

https://link.stthomas.edu/sfpy201810-123 - Compute Initials

1. At the end of the program, add:

ser1first = df1['First'].str[0]
ser1last = df1['Last'].str[0]
ser1initials = ser1first + '. ' + ser1last + '.'
print(ser1initials)

2. Run the code

● Do you see the output below?

● Problems? (Remember: chat check)

● What “data types” do you think are in the
“ser1…” variables? Rationale? Proof?

● Psychoanalyze my variable names!
○ What might you prefer?

● Could the code take fewer lines?
○ If so, how, and why did I make it so long?

● If we added print(df1), would it show a
column with initials?

○ (Feel free to try it after you guess)

● Questions? (Remember: chat check)

0 J. B.
1 S. C.
2 M. M.
3 C. C.
4 V. S.
5 A. S.
6 A. H.
dtype: object

3A

https://link.stthomas.edu/sfpy201810-123 - Add “Sorted Series”
Initials

1. Backspace out the final
print(ser1initials)

2. At the end of the program, add:

ser1initsrt = ser1initials.sort_values()
print(ser1initsrt)
df1['Initials'] = ser1initsrt

3. Run the code

● Do you see the output below?

● Problems? (Remember: chat check)

● Note that we added a new “Initials” column
to the DataFrame in our variable df1, but
that we set it to the values of a “sorted”
series of initials! (Rows 6, 5, 3, 0, 2, 1, 4!)

If we added print(df1):
○ What order would the rows of df1 show

up in? 0, 1, 2… or 6, 5, 3…?

○ Would the right initials be attached to the
right person?

■ (Feel free to try it after you guess)

● Questions? (Remember: chat check)

6 A. H.
5 A. S.
3 C. C.
0 J. B.
2 M. M.
1 S. C.
4 V. S.
dtype: object

3B

Yay! They’re in the right order!

● It must be that “Pandas index magic”

Id First Last Email Company Initials
0 5829 Jimmy Buffet jb@example.com RCA J. B.
1 2894 Shirley Chisholm sc@example.com United States Congress S. C.
2 294 Marilyn Monroe mm@example.com Fox M. M.
3 30829 Cesar Chavez cc@example.com United Farm Workers C. C.
4 827 Vandana Shiva vs@example.com Navdanya V. S.
5 9284 Andrea Smith as@example.com University of California A. S.
6 724 Albert Howard ah@example.com Imperial College of Science A. H.

https://link.stthomas.edu/sfpy201810-123 - Add “Sorted List” Initials

1. Backspace out any print(ser1initsrt) or
print(df1)

2. At the end of the program, add:

list1initsrt = list(ser1initsrt)
df1['Initials'] = list1initsrt
print(list1initsrt)

3. Run the code

● Do you see the output below?

● Problems? (Remember: chat check)

● Note that we overwrote the “Initials”
column of the DataFrame in our variable
df1, with “simple list” copy of what was in
our “alpha-sorted initials” Series. Lists are
always “indexed” a simple “0, 1, 2…”

If we were to add the code print(df1):
○ Would the right initials be attached to the

right person?

■ (Feel free to try it after you guess)

● Questions? (Remember: chat check)

['A. H.', 'A. S.', 'C. C.', 'J. B.',
'M. M.', 'S. C.', 'V. S.']

3C

Oh no! We botched the order!

● It’s still “Pandas index magic,” but our “list” looks like this:
['A. H.', 'A. S.', 'C. C.', 'J. B.', 'M. M.', 'S. C.', 'V. S.']

● In the list, “A.H.” is “#0” instead of “#6”.
So Pandas put it in “row #0” instead of “row #6.”

○ Takeaway: Series & Lists are both 1-D and can be used somewhat interchangeably, but not
they’re not literally the same thing.

Id First Last Email Company Initials
0 5829 Jimmy Buffet jb@example.com RCA A. H.
1 2894 Shirley Chisholm sc@example.com United States Congress A. S.
2 294 Marilyn Monroe mm@example.com Fox C. C.
3 30829 Cesar Chavez cc@example.com United Farm Workers J. B.
4 827 Vandana Shiva vs@example.com Navdanya M. M.
5 9284 Andrea Smith as@example.com University of California S. C.
6 724 Albert Howard ah@example.com Imperial College of Science V. S.

Lucky Us

● We never overwrote our actual CSV file.😂

● Pro Tip: Never .to_csv(…) to the same file you .read_csv() from

Run
Nope
Backspace
Type

More Hands-On
Stay in your current “bunk”

https://link.stthomas.edu/sfpy201810-123 - Sort a whole DataFrame

1. Backspace out all the code we just wrote. Leave all the .read_csv(…) and such.

2. At the end of the program, add:

df3sorted = df3.sort_values(by=['D.O.B.'], ascending=[True])
print(df3sorted[['First','Last','D.O.B.']]) ← (note the DOUBLE square brackets!)

3. Run the code.

● We were trying to display people from oldest
to youngest.

○ Did we do that?

○ If not, what did we actually do, and
conceptually, what might help?

● Problems? Questions? (Remember: chat check)

First Last D.O.B.
1 Quintina Lean 10/14/1963
8 Kata Windus 10/4/1991
3 Yuri Dalton 11/12/1980
2 Corny Noller 12/13/1990
0 Salli Broxup 12/3/1991
5 Mata Pierrepont 8/19/1970
6 Othelia Eastbury 8/4/1955
7 Pansy Mallya 8/4/1955
4 Doretta Herche 9/21/2010

3D

Interpreting “D.O.B.” as a date: 2 approaches

Tell .read_csv(…) to interpret it as a date

Pros:
● Short & sweet if just exploring
● Auto-fixes “D.O.B.” to YYYY-MM-DD for

.to_csv(…) if that’s okay

Cons:
● Have to fix “D.O.B.” back before

.to_csv(…) if we liked m/d/yyyy

Add “DOBdate” column, sort on
“DOBdate,” don’t .to_csv(…) “DOBdate”

Pros:
● More granular control

○ e.g. “timezone” plugins that help convert a
“local” timestamp to a “UTC” timestamp
without tripping over Daylight Svgs. Time

Cons:
● More lines of code

We don’t always need a sortable date

● Not doing anything to D.O.B.

● Grouping by D.O.B. (as long as it’s distinct, it’ll do)

https://link.stthomas.edu/sfpy201810-123 - Sort a DataFrame by date

1. Don’t erase any code from the last exercise – we’re going to fix code above it so that it’ll work right.
2. Near the top of our code, find the df3 = pandas.read_csv(…) line and, right after the word

“object,” add , parse_dates=['D.O.B.'] (with the leading comma) so that the line ends up
looking like this:

df3 = pandas.read_csv('https://(…long URL here…).csv', dtype=object, parse_dates=['D.O.B.'])

3. Run the code.

● Are you seeing people sorted old->young?

● We did the “1st approach”.
○ Note that the DOB looks different (now

YYYY-MM-DD)

● Problems? Questions? (Remember: chat check)

First Last D.O.B.
6 Othelia Eastbury 1955-08-04
7 Pansy Mallya 1955-08-04
1 Quintina Lean 1963-10-14
5 Mata Pierrepont 1970-08-19
3 Yuri Dalton 1980-11-12
2 Corny Noller 1990-12-13
8 Kata Windus 1991-10-04
0 Salli Broxup 1991-12-03
4 Doretta Herche 2010-09-21

3E

Treat-filled Q&A!
(Instead of a break yet – sorry.)

Useful yet?
Imagine you’ve already mastered what you’ve seen.

Sorting rows, adding/discarding columns, discarding/keeping duplicate
rows, counting unique/duplicate rows & values…

Any “Python beats Excel” use cases yet?
You won’t hurt my feelings!

(Remind me to repeat for online & read chat)

Lecture:
“Column” Actions

(No need to memorize – we’ll practice)
[[102 breakpoint-ish (2:20)]]

Selecting specific columns of a DataFrame

● You’ve already seen this “bracket notation.”

○ yourDataFrameHere['SomeColumnName'] is an expression that produces a new
“Series” representing that column. e.g.

df1['First']

○ yourDataFrameHere[['Col1','Col2','Col3']] is an expression that produces a
new “DataFrame” representing just those columns. e.g.

df3sorted[['First','Last','D.O.B.']]

■ Pro Tip: Useful for “peeking” at “wide” tables, like .head() is with “long” tables.
● (Yes, df3sorted[['First','Last','D.O.B.']].head() works!)

■ Note: ['Col1','Col2','Col3'] is just a standard Python “list” expression.

Modifying specific columns of a DataFrame

● “DataFrame-Bracket” notation has special behavior on the left side of an =

○ df1['First'] = 'Anush' will modify the contents of the DataFrame stored in the
variable “df1,” overwriting everyone’s first name to “Anush.”

■ Or, if there is no column named “First,” this statement adds a “First” column and
populating it all the way down with “Anush.”

● Very handy for, say, adding “CampaignId” to a CSV file.
● We leveraged this earlier with df1['Initials'] = …

○ Double-bracket notation is similar, except erroring instead of adding nonexistent columns.

■ df1[['First','Last']] = ['Anush','Lopez'] will turn everyone into an “Anush Lopez”

■ df1[['First','Last']] = 'Kelly' will turn everyone into a “Kelly Kelly”

DataFrame-Bracket Notation Power Use

● We did this in several steps with the “initials” exercise, saving off our
intermediate “series” into variables for legibility. Here’s a similar one-liner.

df1['Full'] = df1['Last'] + ', ' + df1['First']

● df1['Full'] is serving the special function of modifying “df1”

● df1['Last'] and df1['First'] are just expressions that produce
brand new “Series”-typed results (typing them doesn’t modify “df1”)

Adding empty columns (e.g. to fill in later)

yourDF['NewColumnName'] = None

● The “None” keyword, with a capital N, Python’s special “NULL” value.

○ With Pandas, you might also see “NaN”. Same idea.
Technically different; I haven’t had to care.

■ Both reply “True” to .isnull()

■ Both write a blank cell when exporting to CSV

Renaming columns (e.g. “Id”->“ContactId”)

yourDF.rename(columns={'Old1':'New1','Old2':'New2'})

● This expression merely produces a new copy of “yourDF” with the column
names “Old1” & “Old2” replaced by “New1” & “New2,” respectively.

○ Can be handy with .merge(…) (VLOOKUP) operations

● To actually change the contents of “yourDF,” do either of these statements:

○ yourDF.rename(columns={'Old1':'New1','Old2':'New2'}, inplace=True)

○ yourDF = yourDF.rename(columns={'Old1':'New1','Old2':'New2'})

Selecting “all but” specific columns

yourDF.drop(columns=['Unloved1','Unloved2'])

● This expression merely produces a new copy of “yourDF” with all columns
except “Unloved1” & “Unloved2.”

○ Older versions of Python like in our “Codebunk” environment require one of these instead:

■ yourDF.drop(['Unloved1','Unloved2'], axis='columns')

■ yourDF.drop(['Unloved1','Unloved2'], axis=1)

● To actually change the contents of “yourDF,” do either of these statements:

○ yourDF.drop(columns=['Unloved1','Unloved2'], inplace=True)

○ yourDF = yourDF.drop(columns=['Unloved1','Unloved2'])

Expressions vs. Statements review

● Note how an “expression” (something that is something – it doesn’t do
anything) can suddenly become a “statement” (something that does
something – it isn’t a value that you can print(…)) with a teeeeeny bit of
code like “, inplace=True”.

● If your program is acting weird, keep this in mind and:

Run
Nope
Backspace
Type

Series Transformations

● Every “Series” inherently has a bazillion .somethingOrOther… operations
that can follow directly after it (no space).

○ Some of them aggregate the cells of the Series (e.g. “max” or “sum” type operations)

○ Most of them iterate over every cell in the Series, doing the same thing to each one.

■ We used one of these earlier to grab “character #0” of df1’s “Last” column:

df1['Last'].str[0]

■ Typically, they produce a new Series that’s an altered copy of the input Series.

■ Some of them will error out if they hit a cell of a nonsensical “data type” for the operation.

Series Transformations

● Seriously. There are hundreds.
https://pandas.pydata.org/pandas-docs/stable/api.html#series

○ Just the several dozen text-manipulating ones:
https://pandas.pydata.org/pandas-docs/stable/api.html#string-handling

● Under construction by me: a “frequently useful” shortlist at:
https://pypancsv.github.io/pypancsv/commonoperations/

Series Transformations – Boolean Series

● Probably the most useful kind of “series transformations” are the ones that
produce a new Series full of True/False (“Boolean”) values.

● The “False” values in such Series let you “skip over” corresponding rows
of a DataFrame or another Series while performing some action.

Hands-On:
More Row Filters

Re-visit https://link.stthomas.edu/sfpy201810-123
anew

(remember to “fork” it when you open it)

We’ve done a few filters w/o
“True/False Series”

So far, we’ve done:
.head(…)
.tail(…)

.drop_duplicates(…)

https://link.stthomas.edu/sfpy201810-123 - Identify redundant rows

1. At the end of the program, add:

print(df3.duplicated(keep=False))

2. Run the code

● Do you see the output below?

● Problems running? (Remember: chat check)

● What “data type” is this? Rationale?
Proof?

● keep=False makes this operation return
True for a row if it’s “like” any other row.

● We didn’t specify any columns, so it’s
looking at all columns (“pure duplicates”).

● Questions? (Remember: chat check)

0 False
1 False
2 False
3 False
4 False
5 False
6 False
7 False
8 False
dtype: bool

3F

https://link.stthomas.edu/sfpy201810-123 - Identify redundant rows

1. Change your previous line to:

print(df3.duplicated(['Address','D.O.B.'], keep=False))

2. Run the code

● Do you see the output?

● Problems? (Remember: chat check)

● It looks like “row 6” & “row 7” have a “twin roommate” somewhere in the
data set. (Probably each other, since they’re the only 2…)

● What if this were 8,000 rows? How would we know if any were “True?”
○ Ideas? (Hint: “Power of One”)

● Questions? (Remember: chat check)

0 False
1 False
2 False
3 False
4 False
5 False
6 True
7 True
8 False
dtype: bool

3G

https://link.stthomas.edu/sfpy201810-123 - Count redundant rows

1. Change your previous line to:

print(df3.duplicated(['Address','D.O.B.'], keep=False).sum())

2. Run the code

● Do you see the number 2 as output?

● Problems? (Remember: chat check)

● What was that black magic?
○ Ideas?

● Questions? (Remember: chat check)

3H

Magician’s Secrets: Do Duplicates Exist?

df3.duplicated(['Address','D.O.B.'], keep=False).sum()

● df3 is a dataframe, which means it has a .duplicated(…) operation.

● The output of that operation is a True/False-filled Series.

● All Series have a .sum() operation that will add up the value of all of their
cells … presuming those cells are numeric.

● It turns out that Pandas is happy to treat True/False as 1 & 0, meaning that
the “sum” is a record-count of “True” values in the series.

Yay – now we can quick-check whether duplicates exist in an 8,000-row CSV file.

Now let’s see them.

https://link.stthomas.edu/sfpy201810-123 - Display redundant rows

1. Backspace out your code from the last exercise.
2. Add the following code to the end of the program:

ser3isdup = df3.duplicated(['Address','D.O.B.'], keep=False)
print(df3[ser3isdup])

3. Run the code

● Do you see the output?

● Problems? (Remember: chat check)

● What “data type” is this? Rationale? Proof?

● Have we seen this someDataFrame[…] syntax before?

● Questions? (Remember: chat check)

Id First Last D.O.B. Address
6 32443 Othelia Eastbury 8/4/1955 87834 Lyons Terrace, Rainy, OR
7 22082 Pansy Mallya 8/4/1955 87834 Lyons Terrace, Rainy, OR

3I

Lecture:
“Row Filter” Actions

● You just saw a NEW flavor of “bracket notation.”

○ yourDataFrameHere[someTrueFalseSeriesWithTheSameRowIDs] is an expression
that produces that produces a new “DataFrame” representing just the rows where
someTrueFalseSeriesWithTheSameRowIDs was “True.” 2 examples:

■ df3[df3.duplicated(['Address','D.O.B.'], keep=False)]

■ df3[ser3isdup]

○ I prefer #2! Yay, variables.

● Because any yourDF[someSeries] expression is itself a DataFrame, that
means it too has “standard bracket notation” for “column selection.”

○ df3[ser3isdup]['First'] is an expression that would give us a new 2-item “Series”,
with row IDs 6 & 7, showing “Othelia” & “Pansy.”

○ df3[ser3isdup][['First','Last']] is an expression that would give us a new 2-
column, 2-row “DataFrame,” with row IDs 6 & 7, showing “Othelia Eastbury” & “Pansy Mallya.”

○ You can’t [] forever like that. At some point, Python will yell at you for being ambiguous.

■ However, you often can “checkpoint” what you’ve made by saving it into a variable and
then pick up from there as usual.

○ Python will yell at you if you try to put either of these onto the left-hand side of an equation.
Unfortunately, they’re not for selectively editing cells of a DataFrame.

If Pandas doesn’t yet “all look alike” enough…
● df[someTrueFalseSeriesSameLength][someColNameOrList] →

“DataFrame” w/ rows where T/F series=True; cols. as specified.
Not editable left of “=”. Sdlkf …

○ df3[ser3isdup][['First','Last']] gives a 2-column, 2-row “DataFrame,” w/ row IDs
6 & 7, showing “Othelia Eastbury” & “Pansy Mallya.”

● There’s an unrelated df[…][…]. Yay. 😱😓😭
○ df[someSingleColName][someRowIdOrList]

→ “Series” of specified col., w/ items indicated by row ID. Editable left of “=” (Level 102)
■ e.g. df3['Last'][[5,7]] → 2-item “Series,” #5: “Pierrepont” & #7: “Mallya”

○ df[someSingleColName][someTrueFalseSeriesSameLength]
→ “Series” of specified col., w/ items where T/F series=True. Editable left of “=” (Level 102)

■ e.g. df3['Last'][ser3isdup] → 2-item “Series,” #6: “Eastbury” & #7: “Mallya”
○ Doesn’t work w/ column name list (will yell at you).
○ Not editable if column doesn’t exist yet in df (will yell at you).

Door Prize: A Script!
(And then a break)

A real-life script “finddupes.txt”

● I like to save my favorite Python scripts for future reference. Here’s one:

import pandas
pandas.set_option('expand_frame_repr', False)
filename = 'c:\\example\\sample.csv' # Edit this before running
dupeColumns = ['col1','col2','col3'] # Edit this before running
df = pandas.read_csv(filename, dtype=object)
isDupeSeries = df.duplicated(dupeColumns, keep=False)
isFirstDupeSeries = df.duplicated(dupeColumns, keep='first')
print(str(isDupeSeries.sum()) + ' dupes in ' +

str(isFirstDupeSeries.sum()) + ' groups in ' +
str(len(df)) + ' rows')

print('\r\n---The duped rows are:---')
print(df[isDupeSeries])
print('\r\n---The "dupe keys" are:---')
print(df[isFirstDupeSeries][dupeColumns])

Questions? (Chat room?)

10-Minute Break

Questions? (Chat room?)

Lecture: “Starts With” Row Filtering
 print('--What is in "Last" for each row?--')
 lastNameSeries = df1['Last']
 print(lastNameSeries)

 print('--For each row, does "Last" start w/ "C" or "S"?--')
 lastCSBooleanSeries = lastNameSeries.str.startswith('C') | lastNameSeries.str.startswith('S')
 print(lastCSBooleanSeries)

 lastCSdf = df1[lastCSBooleanSeries]
 lastCSdf.to_csv('C:\\yay\\out_lastcs.csv', index=False, quoting=1)

--What is in "Last" for each row?--
0 Buffet
1 Chisholm
2 Monroe
3 Chavez
4 Shiva
5 Smith
6 Howard
Name: Last, dtype: object
--For each row, does "Last" start w/ "C" or "S"?--
0 False
1 True
2 False
3 True
4 True
5 True
6 False
Name: Last, dtype: bool

Hands-On:
Fancier Row Filter

https://link.stthomas.edu/sfpy201810-filter1
🍴 (remember to “fork” it when you open it)🍴

https://link.stthomas.edu/sfpy201810-filter1

● Any problems running it?
○ (Remind me to check the chat)

4A

https://link.stthomas.edu/sfpy201810-filter1

Hands-On: Together (come up to my computer!), we’ll edit the code so that
● Instead of doing:

○ ‘Display all columns, but only rows where “Last” starts with capital “C” or “S”’

● It will do:
○ ‘Display all columns, but only rows where “Company” case-insensitively ends with “a” or

where “Id” is less than 800’

● Hint: Every Series has the following operations:
○ .str.lower() (the resulting output is also a Series, full of text-typed data)
○ .str.upper() (the resulting output is also a Series, full of text-typed data)
○ .str.endswith(…) (the resulting output is also a Series, full of True-False data)
○ .astype('int') (the resulting output is also a Series, full of integer-typed data)

4B

FOR POSTERITY: Copy/paste our code below.

“102” taster: editing cells based on existing data
 theseRowsLastNamesStartWithCapitalS = df1['Last'].str.startswith('S')
 theseRowsHaveA4InTheirId = df1['Id'].astype(str).str.contains('4')
 df1['Last'][theseRowsLastNamesStartWithCapitalS] = 'aaa'
 df1['Email'][theseRowsHaveA4InTheirId] = 'bbb'
 df1['New1'] = None
 df1.loc[theseRowsLastNamesStartWithCapitalS, 'New1'] = 'ccc'
 df1['New2'] = None
 df1.loc[theseRowsHaveA4InTheirId, 'New2'] = 'ddd'
 df1['New3'] = 'eee'
 df1 = df1.drop(['Id', 'Company'], axis=1)
 df1.to_csv('C:\\yay\\out_complexupdates.csv', index=False, quoting=1)

https://link.stthomas.edu/sfpy201810-democomplexcellupdates

“102” taster: Multi-column VLOOKUP
 betterdf2 = df2.rename(columns = {'LastName':'Last', 'FirstName':'First', 'Em':'Email'})
 outermergedf = df1.merge(betterdf2, how='outer', on=['Last', 'First'], suffixes=('_csv1', '_csv2'))
 outermergedf.to_csv('C:\\yay\\out_outermerge.csv', index=False, quoting=1)

Advanced Demo: “generators,” part 1

● Weird but concise code for:
“Show ‘mydf,’ just columns that don’t start with the phrase ‘Program.’”

 colsThatStartWithProgram = [x for x in mydf.columns if x.startswith('Program')]
 mydf = mydf.drop(colsThatStartWithProgram, axis='columns')
 mydf.to_csv('C:\\yay\\out_generator1.csv', index=False, quoting=1)

https://link.stthomas.edu/sfpy201810-demogenerator1

Advanced Demo: “generators,” part 2

● Weird but concise code for:
“Rename any column that starts with ‘Program’ to ‘Course…’”

 colsThatStartWithProgram = [x for x in mydf.columns if x.startswith('Program')]
 renameKey = {x:x.replace('Program','Course', 1) for x in colsThatStartWithProgram}
 mydf = mydf.rename(columns=renameKey)
 mydf.to_csv('C:\\yay\\out_generator2.csv', index=False, quoting=1)

https://link.stthomas.edu/sfpy201810-demogenerator2

102: “State code vs. Label typo-hunt”

● Let’s say you have a 2-column table of “Unique IDs” and “Country Names.”
● You want to dummy-check that no country is listed twice.
● Let’s peek at https://link.stthomas.edu/sfpy201810-demostatetypo

uniqueColBPerColA = someDF.groupby(['colNameA'])['colNameB'].nunique()
print(uniqueColBPerColA[uniqueColBPerColA>1])

Links & Resources

● https://tinyurl.com/pypancsv - All my notes, slides, etc. so far
○ Slides (once I get them online)
○ Examples and exercises
○ “Commonly Used Operations”

■ (Under development … I promise it’ll get better!)

● https://tinyurl.com/PyPanCsvWinIde - getting an “IDE” onto your computer

● https://pbpython.com – “Practical Business Python”
○ (as with many blogs, might be best to start by browsing older posts)

