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How I Found Python



Excel vs/and Python
(Today, just Python, for practice!)



Syllabus

101 (today)
● “Hello, World!”
● Programmer-speak
● Sample Code!

○ Import/Export CSV/XLSX

○ Counting & displaying things

○ Duplicates & uniques

○ Sorting rows

○ Adding/dropping columns

○ Date-time gotchas

○ Selectively editing cells

○ Basic matching / VLOOKUP

🌊🌊 Yes, it’s a lot!🌊🌊
1. Watch me EXPLAIN so:

- “Cool! 🌟😍❤”
- Recognition when Googling

2. 👍 – keep up:
- To reinforce the experience

102 (future)
● Anything we miss today
● More matching/VLOOKUP problems
● More “hard problems”
● BYO problem & sample data; let’s solve it!



Links

● Every link will start with https://link.stthomas.edu/sfpy201810- ...

● Struggling to type fast enough?  Code snippets at:

○ https://link.stthomas.edu/sfpy201810-info
■ (Online folks:  you’re already here – it’s where you got the webinar link.)

○ “Hands-on” slides will indicate which exercise from this “info sheet” we’re 
on using an orange cloud with a number in it!
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Let’s Run A Program
https://link.stthomas.edu/sfpy201810-hello



https://link.stthomas.edu/sfpy201810-hello

● Running Codebunk examples (“fork” + don’t log in)
● Any problems running it?

○ (Remind me to check the chat)
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https://link.stthomas.edu/sfpy201810-hello

● Change Hello World to Yay Us and run your code.
● Any problems?  Does “Yay Us” show up?
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Code Fragment Jargon & IDEs

● Expression: code that is a value.
Like a single Excel cell’s formula.

○ 'Hello World'
○ 'Yay Us'
○ type('Hello World')
○ (1 + 1) / 5
○ 'Amanda'.startsWith('Z')

● Statement: code that does.
Smallest runnable program.
Statement : Program :: Sentence : Essay

○ print(SOME EXPRESSION HERE)
○ cool_variable_Name = SOME 

EXPRESSION HERE

● Operat(-ion/-or) / Function / Method:
expression glue (→expression or →statement)

○ +
○ print(…)
○ type(…)

● Comments: code fragment for humans
○ # One-line comment
○ '''

Multi-line comment:
For really long comments!
'''

● IDE: text editor with a “Run” button
○ Install & run on a computer you control for 

corporate data



Data Types

● Data Type:  dimension & kind
○ 0-D (single points of data)

■ Text?  Number?  True/False (Boolean)?  Blank (Null)?
○ 1-D collections (lists of 0-D points)

■ Row-like (meant to represent 1 “record”)?
■ Column-like (meant to represent 1 “field” across multiple records)?

● If column-like, what type (text/number/Boolean/etc) are the 0-D “data points” 
within this list?

○ 2-D collections (tables of 1-D row-lists & 1-D column-lists intersecting at 0-D points)



Why “Dimension” Matters

● “Dimension” & “Kind” work together to constrain what “operations” 
we can do to data.  Can we …

+, - ? 0D #; 0D text if “+” means “concatenate”

fetch 1st letter? 0D text data

<, == ? 0D number, 0D text …

SELECT?
• fetch “item #3” (2D→1D; 1D→0D)
• fetch “odd-numbered” items (2D→2D; 1D→1D)

1D & 2D data

ITERATE? (inspect each item, potentially altering its value)
• multiply each by 3
• all-caps any item that starts with a P

1D & 2D data

AGGREGATE? (combine all the items together into just one value)
• max
• sum

1D & 2D data



♥ Data Types = Easier “Expression” Writing
● Tricky #1:  Fewer hints about “expression operations while you program 

(in online manuals, though)

● Tricky #2:  Not just “around” & “between” operations like Excel’s 
ISNUMBER("apple") & 1+4

○ Also “after” operations, connected by a period, like "Banana".lower()
○ Worse:  “after” operations in Pandas w/ random extra period, like ….str.lower()
○ Or:  “after” operations in Pandas that launch straight into brackets, like ExpressionHere[…]

Q:  Panic? 😱😓😭
A:  

Confused what 9 - 4 < 2 does?  Inspect smaller problems!
● print(…) & print(type(…)) w/ 9 - 4, 5, 2, 5 < 2, False, etc.
● Copy/paste smaller problems back together, just like you do with big Excel formulas

● print(ExpressionHere)
● print(type(ExpressionHere))
● CoolVariableName = ExpressionHere
● print(CoolVariableName)
● print(type(CoolVariableName))



Coding Culture Shock:  Not Visual

● Working “blind” (vs. Excel) 😱😓😭

Useful tricks:

● “Print” statements
(puts otherwise-invisible data on the screen) 😂

● Nicknaming intermediate “expression” outputs (“setting variables”) for later 
use in code
(like “wet” & “dry” baking bowls)

● “Comments” (notes to self)



No shame in “programming by Google”



Let’s Try That!
• Stay on your current “code bunk.”

Already close it?  Re-“fork” https://link.stthomas.edu/sfpy201810-hello

• Backspace or “comment out” your old code
(Who can guess how we “comment out” code?) 



Type and run, one at a time.  Surprises?

• print('Hello World')
• print(type('Hello World'))
• print(5)
• print(type(5))
• print(None)
• print(type(None))
• print(False)
• print(type(False))
• print(3 * 2.5 * 4)
• print(type(3 * 2.5 * 4))
• print(3 * 2.5 * 4 < 1)
• print(type(3 * 2.5 * 4 < 1))
• myFirstVariable = 3 * 2.5 * 4
• print(myFirstVariable)
• print(type(myFirstVariable))
• print(myFirstVariable < 1)
• print(type(myFirstVariable < 1))
• print('Bye!')

● Boldface:  The “outermost expression” 
within the “print(…)” operator

● Underline:  The expression we’re 
interested in seeing the “value” or the 
“data type” of
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Answer Key.  Surprises?  (Chat room, surprises?)
print('Hello World')
print(type('Hello World'))
print(5)
print(type(5))
print(None)
print(type(None))
print(False)
print(type(False))
print(3 * 2.5 * 4)
print(type(3 * 2.5 * 4))
print(3 * 2.5 * 4 < 1)
print(type(3 * 2.5 * 4 < 1))
myFirstVariable = 3 * 2.5 * 4
print(myFirstVariable)
print(type(myFirstVariable))
print(myFirstVariable < 1)
print(type(myFirstVariable < 1))
print('Bye!')

Hello World
<class 'str'>
5
<class 'int'>
None
<class 'NoneType'>
False
<class 'bool'>
30.0
<class 'float'>
False
<class 'bool'>
{{{{{nothing prints out for this line}}}}}
30.0
<class 'float'>
False
<class 'bool'>
Bye!



Expression-Nesting Pop Quiz

● "Angela".startsWith("P")
● 3 * 2.5 * 4 < 1

How many expressions can you 
see in each example above?

Getting really good at this game will help you 
“backspace & replace” useful code you find on 
the internet, even if you don’t understand it!



Questions?  (Chat room?)
(Trouble getting code to run?)



Let’s look at a CSV file 
using Python

https://link.stthomas.edu/sfpy201810-readcsv



sample1.csv

● 7 rows, 5 columns (people & employer)



https://link.stthomas.edu/sfpy201810-readcsv

● 🍴 (remember to “fork” it if it won’t run!)🍴
● Any problems running it?

○ (Remind me to check the chat)
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Excel, too!

● In addition to pandas.read_csv(…), there’s also 
pandas.read_excel(…)

● When we finish crafting a Pandas “DataFrame” that we like and saving it into 
a variable called, say, “outputdf,” we can do:

○ outputdf.to_csv(…)
○ outputdf.to_excel(…)



sample2.csv

● 6 rows, 5 columns (people & favorite food)



https://link.stthomas.edu/sfpy201810-readcsv - Edit the Code (CSV 2)

Change all but the first occurrence of df1 to df2 and re-run.
● There are 19 changes to make (the last 19 lines of the program)
● Don’t change the one at the very top that starts with df1 =

Review:
● Are you seeing people and their favorite foods?
● Is the total row count down from 7 to 6?
● Any problems?  Questions?

○ (Remind me to check the chat)
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sample3.csv

● 9 rows, 5 columns (people & DOB & address)



https://link.stthomas.edu/sfpy201810-readcsv - Edit the Code (CSV 3)

Change all but the first occurrence of df2 to df3 and re-run.
● There are 19 changes to make (the last 19 lines of the program)
● Don’t change the one at the very top that starts with df2 =

Review:
● Are you seeing people and their addresses?
● Is the total row count up from 6 to 9?
● Any problems?  Questions?

○ (Remind me to check the chat)
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10-Minute Break



Let’s get a little bit harder
3 exercises, same code base.

(If you closed it, re-visit 
https://link.stthomas.edu/sfpy201810-readcsv  

and “fork” it as soon as the page loads.)



https://link.stthomas.edu/sfpy201810-readcsv - Edit the Code

1. “Comment out” the whole print(…) section of code – all 19 lines.
○ Do this by adding 3 single quotes in a row, ''', both before and after that section of code.

2. At the end of the program, add the following new line of code:
print(df3['Address'].unique())

3. Run the code

Review:
● Do you see the following output?

○ ['305 Grover Lane, Sunny, AK' '800 Golden Leaf Street, Snowy, NM' '87834 Lyons 
Terrace, Rainy, OR' '98 Paget Trail, Cloudy, WY']

● Any problems?  Questions?
○ (Remind me to check the chat)
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https://link.stthomas.edu/sfpy201810-readcsv - Edit the Code

1. At the end of the program, add the following new line of code:
print(len(df3['Address'].unique()))

○ Tip:  It’s like the line before it, only with len(…) inside the print(…)

2. Run the code

Review:
● Do you see the following output right below your list of addresses?

○ 4

● Any problems?  Questions?
○ (Remind me to check the chat)
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Useful things to wrap around ….unique(…)

● len(…) – gives you a count of the unique values
● list(…) – useful when you want to copy/paste the output to your clipboard 

with commas between the values
● sorted(…) – the same output as list(…), only case-sensitive alpha order
● sorted(…, key=str.lower) – the same output as sorted(…), only 

case-insensitive alpha order



https://link.stthomas.edu/sfpy201810-readcsv - Edit the Code

1. “Comment out” the last 2 lines of code you added.
○ Do this by putting a # at the beginning of each of the 2 lines of code.

2. At the end of the program, add the following 3 new lines of code:
print(df3.drop_duplicates(['Address'], keep=False))

print(len(df3.drop_duplicates(['Address'], keep=False)))
print(len(df3.drop_duplicates(['Address','D.O.B.'], keep=False)))

3. Run the code
Review:
● Do you see…

○ First, the contents of “row 8” (really 9), which is the only person who lives alone in CSV 3?
○ Second, the number 1 (the # of rows w/ a unique address)?
○ Third, the number 7 (the # of rows w/ a unique address+DOB combo—i.e. no roomie twins)?

● Any problems?  Questions?
○ (Remind me to check the chat)
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Note df3 was “reusable”

● .drop_duplicates(…) didn’t really do anything to df3 in that code

○ We were just print(…) -ing copies

● Know that there ARE ways to alter the contents of our variable “df3” 



We did some neat stuff

● Read a CSV file off the world wide web into our program

● Displayed a copy of that CSV file on the screen in all its ugly glory

● Displayed just its “head” and “tail” (handy if it’s 3,000 lines long)

● Counted lots of things with “len(…)”

● Combined “len(…)” & “['Address'].unique()” into an address count

● Displayed just “unique-data” rows with “.drop_duplicates(…)”
○ .drop_duplicates(…) has other settings that allow us to leave in the first or last of any 

duplicate rows, instead of suppressing all rows that have a duplicate.



If you can display a DataFrame, you can export it**

● If print(type(…)) displays <class 'pandas.core.frame.DataFrame'>, “…” 
is an expression to which you can append .to_csv(…) or .to_excel(…)

○ Pro tip:  the .to_csv(…) command gets lengthy.
Save your “DataFrame” to a “variable” as in the example below.

outputdf = df3.drop_duplicates(['Address'], keep=False)
outputdf.to_csv('C:\\myfolder\\myfile.csv', index=False, quoting=1)

** Not today.  You’re running code online.



More Theory:
DataFrames, Series, & Lists – Oh My!



DataFrames & Series & Lists – oh my!

Data Type Comes With Dimension

DataFrame Pandas plugin 2-D (Table-shaped)

Series Pandas plugin 1-D (List-shaped)

List Python by default 1-D (List-shaped)



1-D AND 2-D data actions

● Select sub-members
○ (1-D:  “select cells” / “select items”)

○ (2-D:  “select columns”)

○ (2-D:  “select rows”)

● “Sort” the data
○ (1-D:  plain-old sort)
○ (2-D:  sort entire “rows” after specifying “columns” whose cell contents will be used for sorting)



2-D data actions

● Adding a “column”
● Dropping a “column”
● Re-ordering “columns”
● Renaming a “column label”
● Importing from a spreadsheet file
● Exporting to a spreadsheet file



1-D data actions

● Editing the contents of cells/items based on other “corresponding” 1-D data

● Using “0-D”-specific operations on the contents of cells/items
○ .isin(…)
○ .notnull()
○ .str.startwith(…)
○ <
○ +



So? ● Programming is “working blind” 
compared to Excel.

● When stuck, helpful to “think 
like a computer” about what 
you’re “really trying to do to 
your data.”



Pandas Index



Pandas Index

● Pandas does a lot of its “inter-column” / “corresponding data” magic
based on row numbering, which it calls “indexing.”

● Usually safe to think of “indexes” as a “row number” or “row ID”
○ “Row ID” probably best.  Get used to seeing:

■ “Missing” row IDs (0, 2, 6, 7)
■ “Out-of-order” row IDs (3, 0, 1, 2)

○ Know that more complicated “indexes” exist
■ “Named” row IDs ('983mv', '9e84f', 'k28fo', 'x934', '8xi', '02e‘)
■ Multi-level indexes (when doing advanced pivoting & grouping)
■ Technically, column names are also indexes



Visual Cues
DataFrames vs. Series vs. Lists



What “DataFrames” look like

● print(type(ExpressionHere)) displays <class 'pandas.core.frame.DataFrame'>
● print(ExpressionHere) looks something like:

● Nothing displayed below the last row
● Multiple data columns allowed.  Inherently 2-DIMENSIONAL.
● “Data column” labels as high as they can go, right-aligned over data
● “Row IDs” at far left.  1) no label or 2) “lowered & left-aligned” if “named”

○ (“Named” happens when you use a special command to convert a data column into a “row ID”)

With generic row IDs With “named” row IDs With generic row IDs, sorted by LastName

FirstName LastName PersonId
0 Shirley   Temple    983mv
1 Andrea    Smith    9e84f
2 Donald     Duck    k28fo
3 Marilyn   Monroe     x934
4 Albert   Howard      8xi
5 Vandana Shiva      02e

FirstName LastName
PersonId
983mv Shirley   Temple
9e84f Andrea    Smith
k28fo Donald     Duck
x934 Marilyn   Monroe
8xi Albert   Howard
02e Vandana Shiva

FirstName LastName PersonId
2 Donald     Duck    k28fo
4 Albert   Howard      8xi
3 Marilyn   Monroe     x934
5 Vandana Shiva      02e
1 Andrea    Smith    9e84f
0 Shirley   Temple    983mv



What “Series” look like

● print(type(ExpressionHere)) displays <class 'pandas.core.series.Series'>
● print(ExpressionHere) looks something like:

● “Name” (if applicable) & “Data Type of contents” displayed below last row
● Only 1 “data” column allowed.  Inherently 1-DIMENSIONAL.

○ (“PersonId as ‘row number’” or “Column label as ‘row number’” don’t count as a “column” – they’re the “index”)

● No label at top for “data” column
● “Row IDs” still at far left.  1) no label or 2) “lowered & left-aligned” if “named”

○ (“Named” happens when you use a special command to convert a data column into a “row ID”)

“First Name” column “First Name” column
(with “named” row IDs)

Column w/ “Does this ‘First 
Name’ cell start with ‘A’?”

Row “2”

0 Shirley
1 Andrea
2 Donald
3 Marilyn
4 Albert
5 Vandana
Name: FirstName, dtype: object

PersonId
983mv Shirley
9e84f Andrea
k28fo Donald
x934 Marilyn
8xi Albert
02e Vandana
Name: FirstName, dtype: object

0 False
1 True
2 False
3 False
4 True
5 False
Name: FirstName, dtype: bool

PersonId k28fo
FirstName Donald
LastName Duck
Em dd@example.com
FavoriteFood Pancakes
Name: 2, dtype: object



What “Lists” look like

● print(type(ExpressionHere)) displays <class 'list'>
● print(ExpressionHere) looks something like:

○ ['Shirley', 'Andrea', 'Donald', 'Marilyn', 'Albert', 'Vandana']
○ [False, True, False, False, True, False]
○ ['k28fo', 'Donald', 'Duck', 'dd@example.com', 'Pancakes']
○ ['PersonId', 'FirstName', 'LastName', 'Em', 'FavoriteFood']

● Single line. Inherently 1-DIMENSIONAL.
○ (Yes, the “1-dimensional” bit means they “play nicely” with Series and vice-versa!)

● Comma-separated values
● Square brackets
● You can’t see it, but implied “item numbers” ALWAYS 0, 1, 2, 3… in order.

○ (The “implied item numbers” can be used to “select” certain items out of the list.)



Hands-On
https://link.stthomas.edu/sfpy201810-123

(remember to “fork” it when you open it)



https://link.stthomas.edu/sfpy201810-123 - Compute Initials

1. At the end of the program, add:

ser1first = df1['First'].str[0]
ser1last = df1['Last'].str[0]
ser1initials = ser1first + '. ' + ser1last + '.'
print(ser1initials)

2. Run the code

● Do you see the output below?

● Problems?  (Remember:  chat check)

● What “data types” do you think are in the 
“ser1…” variables?  Rationale?  Proof?

● Psychoanalyze my variable names!
○ What might you prefer?

● Could the code take fewer lines?
○ If so, how, and why did I make it so long?

● If we added print(df1), would it show a 
column with initials?

○ (Feel free to try it after you guess)

● Questions?  (Remember:  chat check)

0    J. B.
1    S. C.
2    M. M.
3    C. C.
4    V. S.
5    A. S.
6    A. H.
dtype: object
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https://link.stthomas.edu/sfpy201810-123 - Add “Sorted Series” 
Initials

1. Backspace out the final 
print(ser1initials)

2. At the end of the program, add:

ser1initsrt = ser1initials.sort_values()
print(ser1initsrt)
df1['Initials'] = ser1initsrt

3. Run the code

● Do you see the output below?

● Problems?  (Remember:  chat check)

● Note that we added a new “Initials” column 
to the DataFrame in our variable df1, but 
that we set it to the values of a “sorted” 
series of initials! (Rows 6, 5, 3, 0, 2, 1, 4!) 

If we added print(df1):
○ What order would the rows of df1 show 

up in?  0, 1, 2… or 6, 5, 3…?

○ Would the right initials be attached to the 
right person?

■ (Feel free to try it after you guess)

● Questions?  (Remember:  chat check)

6    A. H.
5    A. S.
3    C. C.
0    J. B.
2    M. M.
1    S. C.
4    V. S.
dtype: object
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Yay!  They’re in the right order!

● It must be that “Pandas index magic”

Id    First      Last           Email                      Company Initials
0   5829    Jimmy    Buffet  jb@example.com                          RCA    J. B.
1   2894  Shirley  Chisholm  sc@example.com       United States Congress    S. C.
2    294  Marilyn    Monroe  mm@example.com                          Fox    M. M.
3  30829    Cesar    Chavez  cc@example.com          United Farm Workers    C. C.
4    827  Vandana Shiva  vs@example.com                     Navdanya V. S.
5   9284   Andrea     Smith  as@example.com     University of California    A. S.
6    724   Albert    Howard  ah@example.com  Imperial College of Science    A. H.



https://link.stthomas.edu/sfpy201810-123 - Add “Sorted List” Initials

1. Backspace out any print(ser1initsrt) or 
print(df1)

2. At the end of the program, add:

list1initsrt = list(ser1initsrt)
df1['Initials'] = list1initsrt
print(list1initsrt)

3. Run the code

● Do you see the output below?

● Problems?  (Remember:  chat check)

● Note that we overwrote the “Initials” 
column of the DataFrame in our variable 
df1, with “simple list” copy of what was in 
our “alpha-sorted initials” Series.  Lists are 
always “indexed” a simple “0, 1, 2…”

If we were to add the code print(df1):
○ Would the right initials be attached to the 

right person?

■ (Feel free to try it after you guess)

● Questions?  (Remember:  chat check)

['A. H.', 'A. S.', 'C. C.', 'J. B.', 
'M. M.', 'S. C.', 'V. S.']

3C



Oh no!  We botched the order!

● It’s still “Pandas index magic,” but our “list” looks like this:
['A. H.', 'A. S.', 'C. C.', 'J. B.', 'M. M.', 'S. C.', 'V. S.']

● In the list, “A.H.” is “#0” instead of “#6”.
So Pandas put it in “row #0” instead of “row #6.”

○ Takeaway:  Series & Lists are both 1-D and can be used somewhat interchangeably, but not 
they’re not literally the same thing.

Id    First      Last           Email                      Company Initials
0   5829    Jimmy    Buffet jb@example.com                          RCA    A. H.
1   2894  Shirley  Chisholm  sc@example.com       United States Congress    A. S.
2    294  Marilyn    Monroe  mm@example.com                          Fox    C. C.
3  30829    Cesar    Chavez  cc@example.com          United Farm Workers    J. B.
4    827  Vandana Shiva  vs@example.com                     Navdanya M. M.
5   9284   Andrea     Smith  as@example.com     University of California    S. C.
6    724   Albert    Howard  ah@example.com  Imperial College of Science    V. S.



Lucky Us

● We never overwrote our actual CSV file.😂

● Pro Tip:  Never .to_csv(…) to the same file you .read_csv() from

Run
Nope
Backspace
Type



More Hands-On
Stay in your current “bunk”



https://link.stthomas.edu/sfpy201810-123 - Sort a whole DataFrame

1. Backspace out all the code we just wrote.  Leave all the  .read_csv(…) and such.

2. At the end of the program, add:

df3sorted = df3.sort_values(by=['D.O.B.'], ascending=[True])
print(df3sorted[['First','Last','D.O.B.']]) ← (note the DOUBLE square brackets!)

3. Run the code.

● We were trying to display people from oldest 
to youngest.

○ Did we do that?

○ If not, what did we actually do, and 
conceptually, what might help?

● Problems?  Questions?  (Remember:  chat check)

First        Last      D.O.B.
1  Quintina Lean  10/14/1963
8      Kata      Windus 10/4/1991
3      Yuri      Dalton  11/12/1980
2     Corny      Noller 12/13/1990
0     Salli Broxup 12/3/1991
5      Mata  Pierrepont 8/19/1970
6   Othelia Eastbury 8/4/1955
7     Pansy      Mallya 8/4/1955
4   Doretta Herche 9/21/2010

3D



Interpreting “D.O.B.” as a date:  2 approaches

Tell .read_csv(…) to interpret it as a date

Pros:
● Short & sweet if just exploring
● Auto-fixes “D.O.B.” to YYYY-MM-DD for 

.to_csv(…) if that’s okay

Cons:
● Have to fix “D.O.B.” back before 

.to_csv(…) if we liked m/d/yyyy

Add “DOBdate” column, sort on 
“DOBdate,” don’t .to_csv(…) “DOBdate”

Pros:
● More granular control

○ e.g. “timezone” plugins that help convert a 
“local” timestamp to a “UTC” timestamp 
without tripping over Daylight Svgs. Time

Cons:
● More lines of code



We don’t always need a sortable date

● Not doing anything to D.O.B.

● Grouping by D.O.B. (as long as it’s distinct, it’ll do)



https://link.stthomas.edu/sfpy201810-123 - Sort a DataFrame by date

1. Don’t erase any code from the last exercise – we’re going to fix code above it so that it’ll work right.
2. Near the top of our code, find the df3 = pandas.read_csv(…) line and, right after the word 

“object,” add , parse_dates=['D.O.B.'] (with the leading comma) so that the line ends up 
looking like this:

df3 = pandas.read_csv('https://(…long URL here…).csv', dtype=object, parse_dates=['D.O.B.'])

3. Run the code.

● Are you seeing people sorted old->young?

● We did the “1st approach”.
○ Note that the DOB looks different (now 

YYYY-MM-DD)

● Problems?  Questions?  (Remember:  chat check)

First        Last     D.O.B.
6   Othelia Eastbury 1955-08-04
7     Pansy      Mallya 1955-08-04
1  Quintina Lean 1963-10-14
5      Mata  Pierrepont 1970-08-19
3      Yuri      Dalton 1980-11-12
2     Corny      Noller 1990-12-13
8      Kata      Windus 1991-10-04
0     Salli Broxup 1991-12-03
4   Doretta Herche 2010-09-21

3E



Treat-filled Q&A!
(Instead of a break yet – sorry.)

Useful yet?
Imagine you’ve already mastered what you’ve seen.

Sorting rows, adding/discarding columns, discarding/keeping duplicate 
rows, counting unique/duplicate rows & values…

Any “Python beats Excel” use cases yet?
You won’t hurt my feelings!

(Remind me to repeat for online & read chat)



Lecture:
“Column” Actions

(No need to memorize – we’ll practice)
[[102 breakpoint-ish (2:20)]]



Selecting specific columns of a DataFrame

● You’ve already seen this “bracket notation.”

○ yourDataFrameHere['SomeColumnName'] is an expression that produces a new
“Series” representing that column.  e.g.

df1['First']

○ yourDataFrameHere[['Col1','Col2','Col3']] is an expression that produces a 
new “DataFrame” representing just those columns.  e.g.

df3sorted[['First','Last','D.O.B.']]

■ Pro Tip:  Useful for “peeking” at “wide” tables, like .head() is with “long” tables.
● (Yes, df3sorted[['First','Last','D.O.B.']].head() works!)

■ Note: ['Col1','Col2','Col3'] is just a standard Python “list” expression.



Modifying specific columns of a DataFrame

● “DataFrame-Bracket” notation has special behavior on the left side of an =

○ df1['First'] = 'Anush' will modify the contents of the DataFrame stored in the 
variable “df1,” overwriting everyone’s first name to “Anush.”

■ Or, if there is no column named “First,” this statement adds a “First” column and 
populating it all the way down with “Anush.” 

● Very handy for, say, adding “CampaignId” to a CSV file.
● We leveraged this earlier with df1['Initials'] = …

○ Double-bracket notation is similar, except erroring instead of adding nonexistent columns.

■ df1[['First','Last']] = ['Anush','Lopez'] will turn everyone into an “Anush Lopez”

■ df1[['First','Last']] = 'Kelly' will turn everyone into a “Kelly Kelly”



DataFrame-Bracket Notation Power Use

● We did this in several steps with the “initials” exercise, saving off our 
intermediate “series” into variables for legibility.  Here’s a similar one-liner.

df1['Full'] = df1['Last'] + ', ' + df1['First']

● df1['Full'] is serving the special function of modifying “df1”

● df1['Last'] and df1['First'] are just expressions that produce 
brand new “Series”-typed results (typing them doesn’t modify “df1”)



Adding empty columns (e.g. to fill in later)

yourDF['NewColumnName'] = None

● The “None” keyword, with a capital N, Python’s special “NULL” value.

○ With Pandas, you might also see “NaN”.  Same idea.
Technically different; I haven’t had to care.

■ Both reply “True” to .isnull()

■ Both write a blank cell when exporting to CSV



Renaming columns (e.g. “Id”->“ContactId”)

yourDF.rename(columns={'Old1':'New1','Old2':'New2'})

● This expression merely produces a new copy of “yourDF” with the column 
names “Old1” & “Old2” replaced by “New1” & “New2,” respectively.

○ Can be handy with .merge(…) (VLOOKUP) operations

● To actually change the contents of “yourDF,” do either of these statements:

○ yourDF.rename(columns={'Old1':'New1','Old2':'New2'}, inplace=True) 

○ yourDF = yourDF.rename(columns={'Old1':'New1','Old2':'New2'}) 



Selecting “all but” specific columns

yourDF.drop(columns=['Unloved1','Unloved2'])

● This expression merely produces a new copy of “yourDF” with all columns 
except “Unloved1” & “Unloved2.”

○ Older versions of Python like in our “Codebunk” environment require one of these instead:

■ yourDF.drop(['Unloved1','Unloved2'], axis='columns')

■ yourDF.drop(['Unloved1','Unloved2'], axis=1)

● To actually change the contents of “yourDF,” do either of these statements:

○ yourDF.drop(columns=['Unloved1','Unloved2'], inplace=True) 

○ yourDF = yourDF.drop(columns=['Unloved1','Unloved2']) 



Expressions vs. Statements review

● Note how an “expression” (something that is something – it doesn’t do
anything) can suddenly become a “statement” (something that does
something – it isn’t a value that you can print(…)) with a teeeeeny bit of 
code like “, inplace=True”.

● If your program is acting weird, keep this in mind and:

Run
Nope
Backspace
Type



Series Transformations

● Every “Series” inherently has a bazillion .somethingOrOther… operations 
that can follow directly after it (no space).

○ Some of them aggregate the cells of the Series (e.g. “max” or “sum” type operations)

○ Most of them iterate over every cell in the Series, doing the same thing to each one.

■ We used one of these earlier to grab “character #0” of df1’s “Last” column:

df1['Last'].str[0]

■ Typically, they produce a new Series that’s an altered copy of the input Series.

■ Some of them will error out if they hit a cell of a nonsensical “data type” for the operation.



Series Transformations

● Seriously.  There are hundreds.
https://pandas.pydata.org/pandas-docs/stable/api.html#series

○ Just the several dozen text-manipulating ones:
https://pandas.pydata.org/pandas-docs/stable/api.html#string-handling

● Under construction by me:  a “frequently useful” shortlist at:
https://pypancsv.github.io/pypancsv/commonoperations/



Series Transformations – Boolean Series

● Probably the most useful kind of “series transformations” are the ones that 
produce a new Series full of True/False (“Boolean”) values.

● The “False” values in such Series let you “skip over” corresponding rows
of a DataFrame or another Series while performing some action.



Hands-On:
More Row Filters

Re-visit https://link.stthomas.edu/sfpy201810-123
anew

(remember to “fork” it when you open it)



We’ve done a few filters w/o 
“True/False Series”

So far, we’ve done:
.head(…)
.tail(…)

.drop_duplicates(…)



https://link.stthomas.edu/sfpy201810-123 - Identify redundant rows

1. At the end of the program, add:

print(df3.duplicated(keep=False))

2. Run the code

● Do you see the output below?

● Problems running?  (Remember:  chat check)

● What “data type” is this?  Rationale?  
Proof?

● keep=False makes this operation return 
True for a row if it’s “like” any other row.

● We didn’t specify any columns, so it’s 
looking at all columns (“pure duplicates”).

● Questions?  (Remember:  chat check)

0    False
1    False
2    False
3    False
4    False
5    False
6    False
7    False
8    False
dtype: bool

3F



https://link.stthomas.edu/sfpy201810-123 - Identify redundant rows

1. Change your previous line to:

print(df3.duplicated(['Address','D.O.B.'], keep=False))

2. Run the code

● Do you see the output?

● Problems?  (Remember:  chat check)

● It looks like “row 6” & “row 7” have a “twin roommate” somewhere in the 
data set.  (Probably each other, since they’re the only 2…)

● What if this were 8,000 rows?  How would we know if any were “True?”
○ Ideas?  (Hint:  “Power of One”)

● Questions?  (Remember:  chat check)

0    False
1    False
2    False
3    False
4    False
5    False
6     True
7     True
8    False
dtype: bool

3G



https://link.stthomas.edu/sfpy201810-123 - Count redundant rows

1. Change your previous line to:

print(df3.duplicated(['Address','D.O.B.'], keep=False).sum())

2. Run the code

● Do you see the number 2 as output?

● Problems?  (Remember:  chat check)

● What was that black magic?
○ Ideas?

● Questions?  (Remember:  chat check)

3H



Magician’s Secrets:  Do Duplicates Exist?

df3.duplicated(['Address','D.O.B.'], keep=False).sum()

● df3 is a dataframe, which means it has a .duplicated(…) operation.

● The output of that operation is a True/False-filled Series.

● All Series have a .sum() operation that will add up the value of all of their 
cells … presuming those cells are numeric.

● It turns out that Pandas is happy to treat True/False as 1 & 0, meaning that 
the “sum” is a record-count of “True” values in the series.

Yay – now we can quick-check whether duplicates exist in an 8,000-row CSV file.

Now let’s see them.



https://link.stthomas.edu/sfpy201810-123 - Display redundant rows

1. Backspace out your code from the last exercise.
2. Add the following code to the end of the program:

ser3isdup = df3.duplicated(['Address','D.O.B.'], keep=False)
print(df3[ser3isdup])

3. Run the code

● Do you see the output?

● Problems?  (Remember:  chat check)

● What “data type” is this?  Rationale?  Proof?

● Have we seen this someDataFrame[…] syntax before?

● Questions?  (Remember:  chat check)

Id    First      Last    D.O.B.                         Address
6  32443  Othelia Eastbury 8/4/1955  87834 Lyons Terrace, Rainy, OR
7  22082    Pansy    Mallya 8/4/1955  87834 Lyons Terrace, Rainy, OR

3I



Lecture:
“Row Filter” Actions



● You just saw a NEW flavor of “bracket notation.”

○ yourDataFrameHere[someTrueFalseSeriesWithTheSameRowIDs] is an expression
that produces that produces a new “DataFrame” representing just the rows where 
someTrueFalseSeriesWithTheSameRowIDs was “True.”  2 examples:

■ df3[df3.duplicated(['Address','D.O.B.'], keep=False)]

■ df3[ser3isdup]

○ I prefer #2!  Yay, variables.



● Because any yourDF[someSeries] expression is itself a DataFrame, that 
means it too has “standard bracket notation” for “column selection.”

○ df3[ser3isdup]['First'] is an expression that would give us a new 2-item “Series”, 
with row IDs 6 & 7, showing “Othelia” & “Pansy.”

○ df3[ser3isdup][['First','Last']] is an expression that would give us a new 2-
column, 2-row “DataFrame,” with row IDs 6 & 7, showing “Othelia Eastbury” & “Pansy Mallya.”

○ You can’t [] forever like that.  At some point, Python will yell at you for being ambiguous.

■ However, you often can “checkpoint” what you’ve made by saving it into a variable and 
then pick up from there as usual.

○ Python will yell at you if you try to put either of these onto the left-hand side of an equation.  
Unfortunately, they’re not for selectively editing cells of a DataFrame.



If Pandas doesn’t yet “all look alike” enough…
● df[someTrueFalseSeriesSameLength][someColNameOrList] → 

“DataFrame” w/ rows where T/F series=True; cols. as specified.
Not editable left of “=”. Sdlkf … 

○ df3[ser3isdup][['First','Last']] gives a 2-column, 2-row “DataFrame,” w/ row IDs 
6 & 7, showing “Othelia Eastbury” & “Pansy Mallya.”

● There’s an unrelated df[…][…].  Yay.  😱😓😭
○ df[someSingleColName][someRowIdOrList]

→ “Series” of specified col., w/ items indicated by row ID.  Editable left of “=” (Level 102)
■ e.g. df3['Last'][[5,7]] → 2-item “Series,” #5: “Pierrepont” & #7: “Mallya”

○ df[someSingleColName][someTrueFalseSeriesSameLength]
→ “Series” of specified col., w/ items where T/F series=True.  Editable left of “=” (Level 102)

■ e.g. df3['Last'][ser3isdup] → 2-item “Series,” #6: “Eastbury” & #7: “Mallya”
○ Doesn’t work w/ column name list (will yell at you).
○ Not editable if column doesn’t exist yet in df (will yell at you).



Door Prize:  A Script!
(And then a break)



A real-life script “finddupes.txt”

● I like to save my favorite Python scripts for future reference.  Here’s one:

import pandas
pandas.set_option('expand_frame_repr', False)
filename = 'c:\\example\\sample.csv' # Edit this before running
dupeColumns = ['col1','col2','col3'] # Edit this before running
df = pandas.read_csv(filename, dtype=object)
isDupeSeries = df.duplicated(dupeColumns, keep=False)
isFirstDupeSeries = df.duplicated(dupeColumns, keep='first')
print(str(isDupeSeries.sum()) + ' dupes in ' + 

str(isFirstDupeSeries.sum()) + ' groups in ' + 
str(len(df)) + ' rows')

print('\r\n---The duped rows are:---')
print(df[isDupeSeries])
print('\r\n---The "dupe keys" are:---')
print(df[isFirstDupeSeries][dupeColumns])



Questions?  (Chat room?)



10-Minute Break



Questions?  (Chat room?)



Lecture:  “Starts With” Row Filtering
 print('--What is in "Last" for each row?--')
 lastNameSeries = df1['Last']
 print(lastNameSeries)

 print('--For each row, does "Last" start w/ "C" or "S"?--')
 lastCSBooleanSeries = lastNameSeries.str.startswith('C') | lastNameSeries.str.startswith('S')
 print(lastCSBooleanSeries)

 lastCSdf = df1[lastCSBooleanSeries]
 lastCSdf.to_csv('C:\\yay\\out_lastcs.csv', index=False, quoting=1)

--What is in "Last" for each row?--
0      Buffet
1    Chisholm
2      Monroe
3      Chavez
4       Shiva
5       Smith
6      Howard
Name: Last, dtype: object
--For each row, does "Last" start w/ "C" or "S"?--
0    False
1     True
2    False
3     True
4     True
5     True
6    False
Name: Last, dtype: bool



Hands-On:
Fancier Row Filter

https://link.stthomas.edu/sfpy201810-filter1
🍴 (remember to “fork” it when you open it)🍴



https://link.stthomas.edu/sfpy201810-filter1

● Any problems running it?
○ (Remind me to check the chat)

4A



https://link.stthomas.edu/sfpy201810-filter1

Hands-On:  Together (come up to my computer!), we’ll edit the code so that
● Instead of doing:

○ ‘Display all columns, but only rows where “Last” starts with capital “C” or “S”’

● It will do:
○ ‘Display all columns, but only rows where “Company” case-insensitively ends with “a” or 

where “Id” is less than 800’

● Hint: Every Series has the following operations:
○ .str.lower() (the resulting output is also a Series, full of text-typed data)
○ .str.upper() (the resulting output is also a Series, full of text-typed data)
○ .str.endswith(…) (the resulting output is also a Series, full of True-False data)
○ .astype('int') (the resulting output is also a Series, full of integer-typed data)

4B



FOR POSTERITY:  Copy/paste our code below.



“102” taster:  editing cells based on existing data
 theseRowsLastNamesStartWithCapitalS = df1['Last'].str.startswith('S')
 theseRowsHaveA4InTheirId = df1['Id'].astype(str).str.contains('4')
 df1['Last'][theseRowsLastNamesStartWithCapitalS] = 'aaa'
 df1['Email'][theseRowsHaveA4InTheirId] = 'bbb'
 df1['New1'] = None
 df1.loc[theseRowsLastNamesStartWithCapitalS, 'New1'] = 'ccc'
 df1['New2'] = None
 df1.loc[theseRowsHaveA4InTheirId, 'New2'] = 'ddd'
 df1['New3'] = 'eee'
 df1 = df1.drop(['Id', 'Company'], axis=1)
 df1.to_csv('C:\\yay\\out_complexupdates.csv', index=False, quoting=1)

https://link.stthomas.edu/sfpy201810-democomplexcellupdates



“102” taster: Multi-column VLOOKUP
 betterdf2 = df2.rename(columns = {'LastName':'Last', 'FirstName':'First', 'Em':'Email'})
 outermergedf = df1.merge(betterdf2, how='outer', on=['Last', 'First'], suffixes=('_csv1', '_csv2'))
 outermergedf.to_csv('C:\\yay\\out_outermerge.csv', index=False, quoting=1)



Advanced Demo: “generators,” part 1

● Weird but concise code for:
“Show ‘mydf,’ just columns that don’t start with the phrase ‘Program.’”

 colsThatStartWithProgram = [x for x in mydf.columns if x.startswith('Program')]
 mydf = mydf.drop(colsThatStartWithProgram, axis='columns')
 mydf.to_csv('C:\\yay\\out_generator1.csv', index=False, quoting=1)

https://link.stthomas.edu/sfpy201810-demogenerator1



Advanced Demo:  “generators,” part 2

● Weird but concise code for:
“Rename any column that starts with ‘Program’ to ‘Course…’”

 colsThatStartWithProgram = [x for x in mydf.columns if x.startswith('Program')]
 renameKey = {x:x.replace('Program','Course', 1) for x in colsThatStartWithProgram}
 mydf = mydf.rename(columns=renameKey)
 mydf.to_csv('C:\\yay\\out_generator2.csv', index=False, quoting=1)

https://link.stthomas.edu/sfpy201810-demogenerator2



102:  “State code vs. Label typo-hunt”

● Let’s say you have a 2-column table of “Unique IDs” and “Country Names.”
● You want to dummy-check that no country is listed twice.
● Let’s peek at https://link.stthomas.edu/sfpy201810-demostatetypo

uniqueColBPerColA = someDF.groupby(['colNameA'])['colNameB'].nunique()
print(uniqueColBPerColA[uniqueColBPerColA>1])



Links & Resources

● https://tinyurl.com/pypancsv - All my notes, slides, etc. so far
○ Slides (once I get them online)
○ Examples and exercises
○ “Commonly Used Operations”

■ (Under development … I promise it’ll get better!)

● https://tinyurl.com/PyPanCsvWinIde - getting an “IDE” onto your computer

● https://pbpython.com – “Practical Business Python”
○ (as with many blogs, might be best to start by browsing older posts)


