
Python for Spreadsheet
Manipulation 102

© “pypancsv” 2019

How I Found Python

Excel vs/and Python
(Today, just Python, for practice!)

What do YOU wish you
could do?

(Remind me to repeat for the microphone, please)

Syllabus

102 (today)
● 101 recap
● Coding

○ Adding/dropping columns
○ Basic matching / VLOOKUP
○ Row Filtering

● If time:
○ Selectively editing cells based on

column+row filter combinations
○ A simple pivot?

101 Recap

Coding 101

Pieces of Code: Expressions vs. Statements
Expressions
● 1
● 1+3
● 'Hi There'
● NULL
● True
● False
● 2 < 1
● type('Hi There')

● Like Excel formulas
● Nestable! (Like in Excel … learn to pick

apart sub-parentheses for understanding!)
○ (1 + 3) < (2 / 3)

Statements
● print(1+3)
● coolVariableName = 1+3
● print(4)

● Statement:Program :: Sentence:Essay
● 1 per line

Pieces of Code: Variables
● Nicknames you can “assign” values to

for later reference in your code (by typing to the left of “=”)

○ e.g. codeThatStandsInForTheNumberTwo = 1 + 1

● Pick just about anything, except:
○ Something that’s already a Python command

● Do NOT surround the variable name with quotes …
○ You surround words with quotes when you’re trying to say that they’re text, not code.

○ Variable names BECOME valid code.

Working Blind
● When coding, you don’t get to SEE the results of your computations unless

you save it to a file on your hard drive or do “print()” in a context that actually
shows you output from “print()” (like an “IDE”)

○ FAST!

○ But new paradigm

Hands-On: Running & Writing Code
● Step 1: Open https://link.stthomas.edu/sfpy201901-hello
● Step 2: Hit the big green “run” button, top center
● Step 3: Do you see the text “Hello, world!” at right?

● Step 4: At left, change “Hello, world!” to say “Yay, us!”
(Leave the single quotes in place. They distinguish code from text.)

● Step 5: Hit the big green “run” button, top center.
● Step 6: Do you see the text “Yay, us!” at right?

1

https://link.stthomas.edu/sfpy201901-hello

DataFrames (tables), Series (lists…-ish), & 0-D data
● Python’s “Pandas” plugin’s main commands process entire abstractions of a

spreadsheet, or of one of its rows/columns, at a time, unlike Excel, which is
more “cell-by-cell” oriented.

● Be able to think through whether a given piece of data you’re trying to
process would be, to the computer, a 2-D table, a 1-D row/column/list, or a
0-D single point (e.g. the kind of things that belongs in a single cell).
If a single point, what’s its “data type?” (Just like in Salesforce, integers &
text & dates & such are all computed differently.)

○ Thinking about entire tables and rows as a single data point is DIFFERENT from Salesforce
but normal in programming. Closest Excel analogy: a range.

Anatomy of a DataFrame / Series
● DataFrames:

○ Rows indexed by “Row IDs” (typically starts w/ “0” & counts up from what was originally first
line before any sorting).

○ Columns indexed by column names

● Series:
○ Items indexed by “Item IDs”

■ If the Series represents a column, this will probably be the “row IDs”
of the rows the cell values came from

■ If represents a row, the “column IDs” of the columns
the cell values came from

FirstName LastName PersonId
2 Donald Duck k28fo
4 Albert Howard 8xi
3 Marilyn Monroe x934
5 Vandana Shiva 02e
1 Andrea Smith 9e84f
0 Shirley Temple 983mv

0 Shirley
1 Andrea
2 Donald
3 Marilyn
4 Albert
5 Vandana
Name: FirstName, dtype: object

PersonId k28fo
FirstName Donald
LastName Duck
Em dd@example.com
FavoriteFood Pancakes
Name: 2, dtype: object

The “type()” operation is THE BEST
print('Hello World')
print(type('Hello World'))
print(5)
print(type(5))
print(None)
print(type(None))
print(False)
print(type(False))
print(3 * 2.5 * 4)
print(type(3 * 2.5 * 4))
print(3 * 2.5 * 4 < 1)
print(type(3 * 2.5 * 4 < 1))
myFirstVariable = 3 * 2.5 * 4
print(myFirstVariable)
print(type(myFirstVariable))
print(myFirstVariable < 1)
print(type(myFirstVariable < 1))
print('Bye!')

Hello World
<class 'str'>
5
<class 'int'>
None
<class 'NoneType'>
False
<class 'bool'>
30.0
<class 'float'>
False
<class 'bool'>
{{{{{nothing prints out for this line}}}}}
30.0
<class 'float'>
False
<class 'bool'>
Bye!

Hands-On: Reading & Manipulating CSV Files
● Step 1: Open https://link.stthomas.edu/sfpy201901-files
● Step 2: Remind me to explain the code that was already on screen.
● Step 3: Add a new line to the end of the file and type these

4 lines exactly as seen here (hitting “enter” to start a new line as indicated):
df1 = pandas.read_csv(filepath1)
print(df1)
print('--------')
print('There are ' + str(len(df1)) + ' rows')

● Step 4: Hit the big green “run” button, top center
● Step 5: Do you see a table full of contacts at right, then a divider line, then an

announcement that there are “7 rows”?

2

https://link.stthomas.edu/sfpy201901-files

“Pandas” Commands We Practiced

Store a copy of a CSV file’s contents in a variable
(whose “data type” will be a “Pandas DataFrame”)

● import pandas

● dfVarName1 = pandas.read_csv('c:\\yay\\inputfile.csv')

● dfVarName2 = pandas.read_excel('c:\\yay\\inputfile.xlsx')

Grab a single column from a table
● If the table (data type: “DataFrame”) is stored in a variable called “df4” and

looks roughly like this:

● Then the “expression” to refer to just the contents of its
“Program Registered For” column is (output data type: “Series”)

df4['Program Registered For']

● But remember, it vaporizes as soon as it’s computed unless we save it into a
new variable, print() it, write it out to a file on our hard drive, etc.

Fun tricks w/ df['colName']
https://link.stthomas.edu/sfpy201901-101recap
1. print(list(df['colName'].unique()))
2. df['colName'].to_csv('c:\\yay\\just_this_col.csv', index=False, header=True)

3. print(df['colName'].unique())

4. print(len(df['colName'].unique()))) ← len(…) vs. ….unique()–quirk; read doc!

5. print(sorted(df['colName'].unique(), key=str.lower))
6. df['colName'] = df['colName'].str.upper()
7. df['newCol1'] = df['colName'].str.upper()
8. df['newCol1'] = 'Kelly'
9. df['newCol1'] = None

https://link.stthomas.edu/sfpy201901-101recap

Grab a sub-table from a table
● If the table (data type: “DataFrame”) is stored in a variable called “df4” and

looks roughly like this:

● Then the “expression” to refer to just the contents of its
“First Name” & “Last Name” columns is
(output data type: “DataFrame”)

df4[['First Name','Last Name']]

● Note the extra square brackets! The inner ones indicate a Python LIST.

Fun tricks w/ df[columnList] ← 2nd brackets?!
https://link.stthomas.edu/sfpy201901-101recap
1. df[columnList].to_csv('c:\\yay\\just_this_col.csv', index=False)

2. namecols = [x for x in df4.columns if 'Name' in x]
print(namecols)
print(df4[namecols])

3. df[['First','Last']] = 'Kelly' ← fill down as “Kelly Kelly”
4. df[['First','Last']] = ['John','Smith'] ← fill down
5. df[['First','Last']] = df[['Last','First']] ← swap VALUES
6. df = df[['Last','First']] ← subselect / reorder COLUMNS

7. Note no “new column names” “fill down”!

https://link.stthomas.edu/sfpy201901-101recap

Yikes! That’s a lot of square-bracket subtlety!
● Q: How to deal?

A: DON’T OVERWRITE YOUR INPUT CSV FILENAME
ON YOUR HARD DRIVE.

■ Don’t “.to_csv(…)” to the same “…” that you did “pandas.read_csv(…)” from.
Once you’ve assured that…

■ Play a lot with print(…), print(type(…)), print(….head()), etc!
● (print(dfVariableName.head()) grabs the 1st 5 rows of DataFrame-typed data)

● Q: Why the madness?
● A: To make ultra-common commands concise to type once you know them.

Feeling overwhelmed, non-101-ers?
● Don’t!
● Just follow instructions today and go to

https://pypancsv.github.io/pypancsv/HandsOn201810/ afterwards
to experiment hands-on with everything I just showed at your leisure, for
better retention.

● Just a few more…

https://pypancsv.github.io/pypancsv/HandsOn201810/

Just a few more… (not shown in runnable code)
1. df.head(2)

Produces a copy of your DataFrame, containing only its first 2 rows
2. df.tail(2)

Produces a copy of your DataFrame, containing only its last 2 rows
3. someSeries.head(2)

Produces a copy of your Series, containing only its first 2 items
4. someSeries.tail(2)

Produces a copy of your Series, containing only its last 2 items
5. someList[4] ← new!

Produces single data-point, containing only your List’s 5th item (count starts @ 0)
6. someList[:2] ← new!

Produces a copy of your List, containing only its first 2 items
7. someList[-2:] ← new!

Produces a copy of your List, containing only its last 2 items
8. All the “someList” tricks work with “somePieceOfText” data, only substitute

“letter”/“character” for “item”. You’ll see someText[0] a lot for grabbing initials!

Last ones…
https://link.stthomas.edu/sfpy201901-101recap
1. df.drop_duplicates(subset=columnList, keep='first'))

Produces a copy of your DataFrame, minus all “redundant” rows
2. df.drop_duplicates(subset=columnList, keep=False))

Produces a copy of your DataFrame, KEEPING ONLY “special snowflake” rows
3. hasADupeTFSeries = df.duplicated(subset=columnList, keep=False)

(Right-hand side produces a True/False “Series”; full code adds it as a new column to your
original DataFrame.) (Yes, the “keep=False” wording here is counter-intuitive.)

4. firstOfADupeSetTFSeries = df.duplicated(subset=columnList, keep='first')
(Same idea as #4, but flags whether row is “first of a dupe-set”)

5. df[hasADupeTFSeries] ← df[…] where … is a same-IDs “Series” of true/false shows only “true” rows

(Produces a copy of your DataFrame, MINUS “special snowflake” rows, if did #3.)
6. 'There are ' + str(hasADupeTFSeries.sum()) + ' duplicated records

in ' + str(firstOfADupeSetTFSeries.sum()) + ' groups'
(Yay, “Power of One!” True = 1, False = 0. Presumes you did #3 & #4.)

https://link.stthomas.edu/sfpy201901-101recap

Questions? (Chat room?)

10-Minute Break

Columns
Adding, Deleting, Reordering, & Renaming

(useful before/after combining spreadsheets!)

Add
1. dfVarName['ColumnName'] = …

👍👍 Standard
👍👍 Spaces: 'ColumnName' / 'Column Name'
👎👎 Only add 1 column at a time
👎👎 Permanent change to the table stored in dfVarName

2. dfVarName = dfVarName.assign(ColumnName1 = …, ColumnName2 = …)
👍👍 Add multiple columns
👍👍 dfVarName.assign(…) is just a copy of dfVarName.

🛈🛈 Instead of overwriting the contents of dfVarName, you can use that expression inside another expression, and when you later
referred to dfVarName, it would be unchanged.
(Handy for “which spreadsheet?” labels in “concat” operations.)

👎👎 No spaces: 'ColumnName'

Delete
1. dfVarName = dfVarName[ListOfColumnNamesHere]

🛈🛈 Delete all columns except those in ListOfColumnNamesHere
👍👍Handy if you’re only keeping a few columns.
👍👍👎👎 Columns now arranged in the order you listed them in ListOfColumnNamesHere

2. dfVarName = dfVarName.drop(columns=ListOfColumnNamesHere)
🛈🛈 Deletes the columns in ListOfColumnNamesHere
👍👍Handy if you’re only deleting a few columns
👍👍👎👎 Does not change the order of the remaining columns

Both dfVarName[…] and dfVarName.drop(…) are just copies of dfVarName.
🛈🛈 Instead of overwriting the contents of dfVarName, you can use that expression inside another expression or save it to a different variable, and when
you later referred to dfVarName, it would be unchanged.

*(Remember to use […,…,…] to indicate “this is a list!” when typing ListOfColumnNamesHere if not using a variable holding a list.)

Reorder
1. dfVarName = dfVarName[ListOfColumnNamesHere]

🛈🛈 Ensure ListOfColumnNamesHere includes every column name in dfVarName.
Otherwise, you’ll also delete columns not named!

dfVarName[…] is just a copy of dfVarName.
🛈🛈 Instead of overwriting the contents of dfVarName, you can use that expression inside another expression or save it to a different variable, and when
you later referred to dfVarName, it would be unchanged.

Note: Reordering is for human eyes. Computer doesn’t really care.

*(Remember to use […,…,…] to indicate “this is a list!” when typing ListOfColumnNamesHere if not using a variable holding a list.)

Rename
1. df = df.rename(columns={'ColumnName1':'NewColumnName1','ColumnName2':'NewColumnName2'})

👍👍 Rename multiple columns

dfVarName.rename(…) is just a copy of dfVarName.
🛈🛈 Instead of overwriting the contents of dfVarName, you can use that expression inside another expression or save it to a different variable, and when
you later referred to dfVarName, it would be unchanged.

Hands-On - https://link.stthomas.edu/sfpy201901-123

Go to https://link.stthomas.edu/sfpy123

Modify df1 so that when you put a command print(df1) at the end of your code, you get this output:
Hello Last Name Company First Name Id

0 Yay Us Buffet RCA Jimmy 5829
1 Yay Us Chisholm United States Congress Shirley 2894
2 Yay Us Monroe Fox Marilyn 294
3 Yay Us Chavez United Farm Workers Cesar 30829
4 Yay Us Shiva Navdanya Vandana 827
5 Yay Us Smith University of California Andrea 9284
6 Yay Us Howard Imperial College of Science Albert 724

1. Add a column called “Hello” with the phrase “Yay Us” filled in all the way down
2. Rename “Last” to “Last Name” and “First” to “First Name”
3. Delete the “Email” column
4. Reorder the columns to be “Hello,” “Last Name,” “Company,” “First Name,” & then “Id.”

🛈🛈 (https://link.stthomas.edu/sfpy201901-info#colcommands)

3

https://link.stthomas.edu/sfpy201901-123
https://link.stthomas.edu/sfpy123
https://link.stthomas.edu/sfpy201901-info#colcommands

Hands-On: One Possible Answer
df1['Hello'] = 'Yay Us'
df1 = df1.rename(columns={'Last':'Last Name','First':'First Name'})
df1 = df1.drop(columns=['Email'])
df1 = df1[['Hello', 'Last Name', 'Company', 'First Name', 'Id']]
print(df1)

1. Did you get the right output?
2. Questions? (Chat room?)

Questions? (Chat room?)

Door Prize – https://link.stthomas.edu/sfpy201901-info#doorprize-col

columnsWithProgramInTheName = [x for x in df.columns if 'Program' in x]
theRestOfTheColumns = [x for x in df.columns if x not in columnsWithProgramInTheName]

newColumnOrder = columnsWithProgramInTheName + theRestOfTheColumns
df = df[newColumnOrder]

renamingMap = {x:x.replace('Program','') for x in columnsWithProgramInTheName}
df = df.rename(columns=renamingMap)

https://link.stthomas.edu/sfpyinfo#doorprize-col

Questions? (Chat room?)

Combining Spreadsheets
As Promised!

↕ or ↔ ? It depends on your business problem!
Vertical ↕
● Excel: Copying a spreadsheet/column

and pasting it below another one

● Use: Combining equivalent datasets

○ (like 2+ lists of people, or 2+ lists of
transaction logs for the same kinds of
transactions)

Code:
pandas.concat(listOfDataframesOrSeries)

Horizontal ↔
● Excel: VLOOKUP

Access: relationship

● Uses:

○ Looking up “reference” data (e.g. the ID for
a name) – Excel VLOOKUP

○ Combining info about “the same”
people/transactions/etc. from disparate
data sources – Access Relationship

● Note: ↔ = “2 at a time”; no 3+

Code:
dfVarName1.merge(dfVarName2)

↕ (Table or Column) Concatenation ↕

Concatenation ↕ business problems
1. List all unique e-mail addresses in a spreadsheet, whether they be under “Email,” “WorkEmail__c,”

or “SchoolEmail__c.”

2. List all unique e-mail addresses between 2 spreadsheets, whether they be under #1’s “Email,”
“WorkEmail__c,” or “SchoolEmail__c” fields, or under #2’s “EMAILADDR,” “EMAIL2__C,”
“EMAIL3__C,” or “EMAIL4__C” fields.

3. Spreadsheet 1 has columns “First,” “Last,” “Email.”
Spreadsheet 2 has columns “LastName,” “Em,” & “FirstName.”
Concatenate appropriately (e.g. Em = Email) & dedupe (by all 3 fields together).

4. Spreadsheet 1, Spreadsheet 2, & Spreadsheet 3 all have columns “Name,” “DOB,” &
“AttendedOrNot” (they’re EventBrite exports).
Add a “WhichSheet” column to each of them saying “Event1,” “Event2,” or “Event3,” concatenate,
and sort by “Name,” “DOB,” & “WhichSheet.”

🛈🛈 Code at https://link.stthomas.edu/sfpy201901-info#concat

https://link.stthomas.edu/sfpyinfo#concat

↔ (Table) Merge ↔

Merge ↔ business problems
1. Add “Country Code” & “Country Capital” columns to a spreadsheet full of people, using their

“MailingCountry” as a matching key to some “Country Detail” spreadsheet’s “Name” column.

2. Combine 2 spreadsheets full of people and things you know about them on “FirstName,”
“LastName,” & “Email” as a matching key.

3. Cross-check 2 financial transaction logs that should be identical, ensuring no “transaction ID” exists
in only one spreadsheet, nor has a different timestamp between the two spreadsheets.

🛈🛈 Code at https://link.stthomas.edu/sfpy201901-info#merge

https://link.stthomas.edu/sfpyinfo#merge

Hands-On: 3 event rosters, 1 SF-Contact, 1 SF-Campaign

4

Hands-On (collaboration out loud encouraged)
Go to https://link.stthomas.edu/sfpy201901-eventmerge & https://link.stthomas.edu/sfpy201901-info#ex4 & its cheats.

1. Concatenate the 3 EventBrite sheets vertically ↕ and save it as “eventsdf”
2. Do an “inner” merge from “eventsdf” to “contactsdf” (“inner” implication: drops any attendees not yet in Salesforce –

we’ll get to them later) matching on the FIRSTNAME, LASTNAME, & EMAIL; save the result as “merge1df”.
3. Delete columns from “merge1df” so that only the columns of “eventsdf” and the “ID” column remain; ensure the

change persists to “merge1df”.
4. Rename the “ID” column of “merge1df” to “ContactId”; ensure “merge1df” changes.
5. Merge “merge1df” against “campaignsdf” on event name & start date; “inner” merge; save the result as “merge2df”.
6. Rename the “ID” column of “merge2df” to “CampaignId”; ensure “merge2df” changes.
7. Rename the “Attendance Status” column of “merge2df” to “CampaignMemberStatus”; ensure “merge2df” changes.
8. Re-order the fields of “merge2df” to be: ContactId, CampaignId, CampaignMemberStatus, Last, First, Email, Event

Name, Event Date. Don’t bother including “NAME” or “HAPPENED_ON__C” in your final output if they exist.
9. Export your data to “CampaignMemberRecordsToInsert.csv” and have a look. Does it look like it should?

4

https://link.stthomas.edu/sfpy201901-eventmerge
https://link.stthomas.edu/sfpy201901-info#ex4

Hands-On: One Possible Answer
1. Did you get the right output?
2. Questions? (Chat room?)

eventsdf = pandas.concat([evdf1, evdf2, evdf3])

merge1df = eventsdf.merge(contactsdf, how='inner',
left_on=['First','Last','Email'], right_on=['FIRSTNAME','LASTNAME','EMAIL'])

merge1df = merge1df[list(eventsdf.columns) + ['ID']]

merge1df = merge1df.rename(columns={'ID':'ContactId'})

merge2df = merge1df.merge(campaignsdf, how='inner',
left_on=['Event Name','Event Date'], right_on=['NAME','HAPPENED_ON__C'])

merge2df = merge2df.rename(
columns={'ID':'CampaignId','Attendance Status':'CampaignMemberStatus'})

merge2df = merge2df[['ContactId', 'CampaignId', 'CampaignMemberStatus', 'Last', 'First',
'Email', 'Event Name', 'Event Date']]

merge2df.to_csv('CampaignMemberRecordsToInsert.csv', index=False, quoting=1)

● I’ve put code up that can deal with more than 3 “EventBrite” files -- let’s watch it run.

import os
import pandas

lookForCSVsInThisFolder = 'c:\\FolderWhereIPutAllTheFiles\\'

listOfDataFrames = []
for x in os.listdir(lookForCSVsInThisFolder):

if x.endswith('.csv'):
xdf = pandas.read_csv(x)
xdf = xdf.assign(WhichCSV = x)
listOfDataFrames.append(xdf)

concatdf = pandas.concat(listOfDataFrames)

concatdf = concatdf.sort_values(by=['First','Last','Email','WhichCSV'])

concatdf.to_csv('c:\\example\\loopconcat.csv', index=False)

Door Prize – https://link.stthomas.edu/sfpy201901-info#doorprize-concat

“Door Prize Script: Event-Attendance-Concatenating Loop”

https://link.stthomas.edu/sfpy201901-info#doorprize-concat

Questions? (Chat room?)

10-Minute Break
LEAVE YOUR WORK UP!

Rows
Deleting

Row-Deletion Examples
1. df[df.duplicated(subset=columnList, keep=False)]

Produces a copy of your DataFrame, containing only rows that’re part of a duplicate set

2. hasDuplicateSeries = df.duplicated(subset=columnList, keep=False)

df[hasDuplicateSeries] ← Same as #3, only broken into more lines of code for readability

3. df[df['someColumn'].str.upper().str.startswith('S')
|
df['Last'].str.upper().str.startswith('C')]

Produces a copy of your DataFrame, w/ only rows where SomeColumn starts w/ s/S/c/C

4. lastStartsSSeries = df['SomeColumn'].str.upper().str.startswith('S')
lastStartsCSeries = df['SomeColumn'].str.upper().str.startswith('C')

lastStartsEitherSeries = lastStartsSSeries | lastStartsSSeries

df[lastStartsEitherSeries] ← Same as #3, only broken into more lines of code for readability

Hands-On: Adding Row Filters
When we merged “eventsdf” with “contactsdf,” we let Python drop any “eventsdf”
records that didn’t have a corresponding “contactsdf.”

Let’s go back and grab those, save them as “merge3df,” “insert them into
Salesforce” (we’ll pass them to a fake “Data Loader”), and carry on otherwise like
we did with “merge1df” (eventually merging with campaigns for a “merge4df”).

We’ll export “merge4df” to “CampaignMemberRecordsToInsert2.csv”

5

Nitpick / Extra Credit
● Yes! Instead of dumping merge2df to one CSV

and merge4df to another CSV, we could:

○ pandas.concat(…) merge2df & merge4df together

○ dump the result to a single CSV

5

Hands-On: Handling everyone not in Salesforce
Stay in your old work (if you didn’t get it, go to https://link.stthomas.edu/sfpy201901-eventmerge2); also open
https://link.stthomas.edu/sfpy201901-info#ex5.

1. Do a “left” merge from “eventsdf” to “contactsdf” matching on the FIRSTNAME, LASTNAME, & EMAIL; turn on the
“indicator=True” flag; save the result as “merge3df”.

2. Remove from “merge3df” any rows where the value in the “_merge” column is not “left_only”; ensure change
persists. (We do this by building an expression that becomes a “Series” of True/False values with the same “Item
Ids” that “merge3df” has as “row IDs,” then putting that expression inside “merge3df = merge3df[…]”)

3. Run the following command: merge3df = doFakeDataLoad(merge3df)
4. Delete columns from “merge3df” so that only the columns of “eventsdf” and “ID” remain; ensure the change persists

to “merge3df”. (Note: from here on out, we’ve done this before, just merge1->merge3 & merge2->merge4.)
5. Rename the “ID” column of “merge3df” to “ContactId”; ensure “merge3df” changes.
6. Merge “merge3df” against “campaignsdf” on event name & start date; “inner” merge; save the result as “merge4df”.
7. Rename the “ID” column of “merge4df” to “CampaignId”; ensure “merge4df” changes.
8. Rename the “Attendance Status” column of “merge4df” to “CampaignMemberStatus”; ensure “merge4df” changes.
9. Re-order the fields of “merge4df” to be: ContactId, CampaignId, CampaignMemberStatus, Last, First, Email, Event

Name, Event Date. Don’t bother including “NAME” or “HAPPENED_ON__C” in your final output if they exist.
10. Export your data to “CampaignMemberRecordsToInsert2.csv” & have a look. Does it look like it should?

5

https://link.stthomas.edu/sfpy201901-eventmerge2
https://link.stthomas.edu/sfpy201901-info#ex5

Hands-On: One Possible Answer
1. Did you get the right output?
2. Questions? (Chat room?)
eventsdf = pandas.concat([evdf1, evdf2, evdf3])

merge3df = eventsdf.merge(contactsdf, how='left', indicator=True,
left_on=['First','Last','Email'], right_on=['FIRSTNAME','LASTNAME','EMAIL'])

notInSFSeries = merge3df['_merge'] == 'left_only'

merge3df = merge3df[notInSFSeries]

merge3df = doFakeDataLoad(merge3df)

merge3df = merge3df[list(eventsdf.columns) + ['ID']]

merge3df = merge3df.rename(columns={'ID':'ContactId'})

merge4df = merge3df.merge(campaignsdf, how='inner',
left_on=['Event Name','Event Date'], right_on=['NAME','HAPPENED_ON__C'])

merge4df = merge4df.rename(
columns={'ID':'CampaignId','Attendance Status':'CampaignMemberStatus'})

merge4df = merge4df[['ContactId', 'CampaignId', 'CampaignMemberStatus', 'Last', 'First',
'Email', 'Event Name', 'Event Date']]

merge4df.to_csv('CampaignMemberRecordsToInsert2.csv', index=False, quoting=1)

LEAVE YOUR WORK UP!

Questions? (Chat room?)

Cell Intersections
Selectively Editing

Cell-Intersection Selective Editing

1. df['SomeColumn'][someTrueFalseSeriesSameIDs] = someValueOrSeries

What we’re doing here is selecting a column, THEN sub-selecting certain “items” from
that column the way we’d normally select rows from a table, THEN setting those cells.

You can only do this 1 column at a time, and SomeColumn has to exist … sorry!

Hands-On: Adding a “notes” column
Stay in your old work (if you didn’t get it, go to https://link.stthomas.edu/sfpy201901-eventnotes); also open
https://link.stthomas.edu/sfpy201901-info#ex6.

1. Make a clean copy of “eventsdf” into a new DataFrame called “notesdf” (note: you’ll need “eventsdf.copy()”)
2. Overwrite the contents of the “Event Name” column of “notesdf” to replace “Python for Salesforce ” with “PySF” for

better skimmability. (Note: all text-filled “Series” have a “.str.replace(thingToReplace, replaceItWith)” operation.)
3. Get rid of the “Email” & “Attendance Status” columns. They’re just wasting screen space right now.
4. Add a new blank column called “Note” to notesdf (add a new column & fill it all the way down as the value None).
5. Selectively edit the value of Note to say “Flag A: ” along with the Event Date from that row if the person’s last name

starts with a capital S.
6. Selectively edit the value of Note to say “Flag B: ” along with an upper-cased version of the person’s first name if

they’re on the roster for an event in November 2018 or later.
7. Verify “notesdf” now looks something like this: (HEY! Why is “Southerns” “flag B” in 2 rows?)

6

https://link.stthomas.edu/sfpy201901-eventnotes
https://link.stthomas.edu/sfpy201901-info#ex6

Hands-On: One Possible Answer
1. Did you get the right output?
2. Questions? (Chat room?)

notesdf = eventsdf.copy()

notesdf['Event Name'] = notesdf['Event Name'].str.replace(
'Python for Salesforce ','PySF')

notesdf = notesdf.drop(columns=['Email','Attendance Status'])

notesdf['Note'] = None

conditionAseries = notesdf['Last'].str.startswith('S')

notesdf['Note'][conditionAseries] = 'Flag A: ' + notesdf['Event Date']

conditionBseries = notesdf['Event Date'] > '2018-10-31'

notesdf['Note'][conditionBseries] = 'Flag B: ' + notesdf['First'].str.upper()

print(notesdf)

Questions? (Chat room?)

Pivoting Data
This is such a huge topic. We’ll do one.

See http://pbpython.com/archives.html and start
towards the end (2014) if you need lots of this.

(“Practical Business Python” blog)

http://pbpython.com/archives.html

import numpy
import pandas
evdf1 = pandas.read_csv('https://raw.githubusercontent.com/pypancsv/pypancsv/master/docs/_data/mergehandson_event1.csv')
evdf2 = pandas.read_csv('https://raw.githubusercontent.com/pypancsv/pypancsv/master/docs/_data/mergehandson_event2.csv')
evdf3 = pandas.read_csv('https://raw.githubusercontent.com/pypancsv/pypancsv/master/docs/_data/mergehandson_event3.csv')

eventsdf = pandas.concat([evdf1, evdf2, evdf3])

pivotdf = pandas.pivot_table(eventsdf, index=['First','Last','Email'], columns='Event Date',
values='Attendance Status', aggfunc=numpy.min)

pivotdf = pivotdf.reset_index()
pivotdf.columns.name = None
eventDatesOffered = list(eventsdf['Event Date'].unique())
pivotdf['RSVPed'] = pivotdf[eventDatesOffered].count(axis='columns')
pivotdf['Came'] = pivotdf[eventDatesOffered].isin(['Attended']).sum(axis='columns')
pivotdf['Didnt'] = pivotdf[eventDatesOffered].isin(['No-Show','Cancelled']).sum(axis='columns')
pivotdf.to_csv('c:\\example\\outputpivot.csv', index=False)

Door Prize – https://link.stthomas.edu/sfpy201901-info#pivot
“Door Prize Script: A little pivot”

https://link.stthomas.edu/sfpyinfo#pivot

Questions? (Chat room?)

THANK YOU! - Links & Resources
● https://tinyurl.com/pypancsv - All my notes, slides, etc. so far

○ Slides (once I get them online)
○ Examples and exercises
○ “Commonly Used Operations”

■ (Under development … I promise it’ll get better!)

● https://tinyurl.com/PyPanCsvWinIde - getting an “IDE” onto your computer

● https://pbpython.com – “Practical Business Python”
○ (as with many blogs, might be best to start by browsing older posts)

https://tinyurl.com/pypancsv
https://tinyurl.com/PyPanCsvWinIde

	Python for Spreadsheet Manipulation 102
	How I Found Python
	Excel vs/and Python
	What do YOU wish you could do?
	Syllabus
	101 Recap
	Coding 101
	Pieces of Code: Expressions vs. Statements
	Pieces of Code: Variables
	Working Blind
	Hands-On: Running & Writing Code
	DataFrames (tables), Series (lists…-ish), & 0-D data
	Anatomy of a DataFrame / Series
	The “type()” operation is THE BEST
	Hands-On: Reading & Manipulating CSV Files
	“Pandas” Commands We Practiced
	Store a copy of a CSV file’s contents in a variable�(whose “data type” will be a “Pandas DataFrame”)
	Grab a single column from a table
	Fun tricks w/ df['colName'] �https://link.stthomas.edu/sfpy201901-101recap
	Grab a sub-table from a table
	Fun tricks w/ df[columnList] ← 2nd brackets?!�https://link.stthomas.edu/sfpy201901-101recap
	Yikes! That’s a lot of square-bracket subtlety!
	Feeling overwhelmed, non-101-ers?
	Just a few more… (not shown in runnable code)
	Last ones…�https://link.stthomas.edu/sfpy201901-101recap
	Questions? (Chat room?)
	10-Minute Break
	Columns
	Add
	Delete
	Reorder
	Rename
	Hands-On - https://link.stthomas.edu/sfpy201901-123
	Hands-On: One Possible Answer
	Questions? (Chat room?)
	Door Prize – https://link.stthomas.edu/sfpy201901-info#doorprize-col
	Questions? (Chat room?)
	Combining Spreadsheets
	↕ or ↔ ? It depends on your business problem!
	↕ (Table or Column) Concatenation ↕
	Concatenation ↕ business problems
	↔ (Table) Merge ↔
	Merge ↔ business problems
	Hands-On: 3 event rosters, 1 SF-Contact, 1 SF-Campaign
	Hands-On (collaboration out loud encouraged)
	Hands-On: One Possible Answer
	Slide Number 47
	Questions? (Chat room?)
	10-Minute Break
	Rows
	Row-Deletion Examples
	Hands-On: Adding Row Filters
	Nitpick / Extra Credit
	Hands-On: Handling everyone not in Salesforce
	Hands-On: One Possible Answer
	LEAVE YOUR WORK UP!
	Questions? (Chat room?)
	Cell Intersections
	Cell-Intersection Selective Editing
	Hands-On: Adding a “notes” column
	Hands-On: One Possible Answer
	Questions? (Chat room?)
	Pivoting Data
	Slide Number 64
	Questions? (Chat room?)
	THANK YOU! - Links & Resources

