
For Non-Programmers!

© “pypancsv” 2018

CSV Editing With Python
(and Pandas)

Make Python code look accessible to people who often say:

“I have no idea why that works, but
I’ll copy+edit it anyway

if it does the job.”

Demonstrate cool code you’ll want to break try

Presentation Goals

Basics
CSV = Comma Separated Values
Text-editor-friendly
No formatting
Database export/import

“Table-shaped” data, so Excel often easy
But sometimes not … so … Hi! 😊

Python + Pandas
Python: programming language

Pandas: module (plugin) for Python
Adds CSV-related commands

Programs run in an IDE
IDE: code-editing software with a run button

Use Excel
 Simple column manipulation & fills:

 Simple “filter-and-delete-rows”:

 Simple “filter and edit value”:

Use Python
Filter and-delete-rows …

…with 1-million-row table that freezes Excel

Filter and edit value …
… 50 times in a row with different variations

Pivot & filter the pivoted data, e.g.
Delete all rows except the oldest member of a household

VLOOKUP against multiple columns, e.g.
Combine everyone from 2 spreadsheets with the same

first name, last name, and phone number

OK to combine!
 Excel: exploration
 Python: automation

 Example: 100,000 rows, no idea:
 # of rows with an “inter-column data mismatch”
 Categories of “mismatch” they would cluster into

 (“Do I care?” “How did it get this way?”)

1. Python:
 Add a blank “MismatchType” column
 Delete rows with no mismatch

2. Excel:
 Play with filters to discover mismatch “categories” in remaining rows

3. Python:
 For each “mismatch category” discovered:

 Label such rows under “MismatchType”
 Delete rows I consider unimportant mismatches

4. Repeat steps 2-3 until every row has a “MismatchType” value or is gone
5. Excel:

 Show colleagues remaining 1,000 rows clustered into 20 “mismatch types” and discuss

6 hours of exploring & thinking.
Had to start over with a

fresh copy of the data halfway through.
Had I not “scripted” my work,

would have been 9 hours.

What makes a program a program?
Why isn’t Excel a program?

Programming 101
(To help you follow the examples)

 Expression: code that becomes/is a value.
 Nestable

 1 + 1
 “Hello”.startsWith(“P”)
 3 * 2.5 * 4 < 1
 concatenate(“h”,”e”,”l”,”l”,”o”)

 Statement: standalone code that does something noticeable.
 NOT nestable

 “Show me the value of ‘1+1’ on my screen.”
 “Store the value of ‘1+1’ in a variable called ‘myMath’”
 “Import a ‘package’ that lets me type a wider range of commands in my code.”

 Operation: code that combines expressions together into bigger
expressions or into a statement

 +
 .startsWith(…)
 <
 concatenate (… , … , … , …)
 “show me … on my screen”
 “store … into a variable called …”

Expressions & Statements & Operations

 “Hello”.startsWith(“P”)
 3 * 2.5 * 4 < 1

How many expressions can you see
in each example above?

Expression-Nesting Pop Quiz

Getting really good at this game will
help you “backspace & replace”
useful code you find on the internet,
even if you don’t understand it!

 Statement: smallest unit of runnable code in a program

Multiple statements = a program
 (1-statement program possible, like 1-sentence essay)

 Typically 1 statement per line of code (especially in Python)

Statements Make Programs

 Excel: “expressions” only

 Besides Macros/VBA (often a pain), no way to save a
sequence of doing things.

 we code!
 (w/ Python, because 😊)

Expressions ≠ Programs
Excel ≠ Programs

Culture Shock Alleviation

Programming 101

Working “blind” (vs. Excel) 😱😓😭
Useful tricks:

“Print” statements
(puts otherwise-invisible data on the screen) 😂

Nicknaming intermediate “expression” outputs
(“setting variables”) for later use in code
(like “wet” & “dry” baking bowls)

“Comments”
(words in your code that aren’t really code –
notes to self)

Coding Culture Shock: Not Visual

No shame in “Programming By Google”

Intro

Seeing your data like a programmer

Programming 101

 Data Type: dimension & kind
 0-D (single points of data)

 Text? Number? True/False (Boolean)? Blank (Null)?
 1-D collections (lists of 0-D points)

 Row-like (meant to represent 1 “record”)?
 Column-like (meant to represent 1 “field” across multiple records)?

 If column-like, what type (text/number/Boolean/etc) are the 0-D “data points” within this list?
 2-D collections (tables of 1-D row-lists & 1-D column-lists intersecting at 0-D points)

 Constrains what “operations” we can do to data. Can we …
 +, - ? 0D #, 0D text if + is “concatenate”
 fetch 1st letter? 0D text data
 <, == ? 0D number, 0D text …
 SELECTION – 1D & 2D data: fetch “item #3” or “fetch odd-numbered items”?
 ITERATION – 1D & 2D data: do something separately to every item, leaving behind a

new value in each item’s place? (e.g. multiply each by 3)
 AGGREGATION – 1D & 2D data: combine all the items together into just one value?

(e.g. “max” or “sum”)

Data Types

Operations require different numbers & placement of
“input expressions” (You’ve seen this in Excel!)

 0-input example: NOW()
 output = {current date & time} (true/false “DateTime”-typed data)

 1-input example: ISNUMBER("apple")
 input = “apple” (text-typed data)
 output = False (true/false “Boolean”-typed data)

 2-input example: 1 + 4
 inputs = 1 & 4 (number-typed data)
 output = 5 (number-typed data)

 (Remember: 1 + 5 + 3 is actually two back-to-back two-input operations, 1 + 5 and 6 + 3.)

 3+-input example: SUM(3,4,5,9,4)
 inputs = 3, 4, 5, 9, & 4 (number-typed data)
 output = 25 (number-typed data)

Operations’ “Input Expressions”

 Tricky #1: Fewer helpful hints about “expression operations while you program (in online manuals)

 Tricky #2: Not just “AROUND” & “BETWEEN” operations like ISNUMBER("apple") & 1+4
 Also “AFTER” operations, connected by a period, like “Hello".lower()
 Worse: “AFTER” operations in Pandas w/ random extra period, like ExpressionHere.str.lower()

Q: Panic? 😱😓😭
A:

♥ Data Types = Easier “Expression” Writing

 print(ExpressionHere)
 print(type(ExpressionHere))
 CoolVariableName = ExpressionHere
 print(CoolVariableName)
 print(type(CoolVariableName))

Confused what 9 - 4 < 2 does? Inspect smaller problems!
• print(…) & print(type(…)) 3-4, 1, 5<1, 1<2, or 3<3.
• Copy/paste back together, like big Excel formulas.

Python Example: “Print” things to read them
print('Hello World')
print(type('Hello World'))
print(5)
print(type(5))
print(None)
print(type(None))
print(False)
print(type(False))
print(3 * 2.5 * 4)
print(type(3 * 2.5 * 4))
print(3 * 2.5 * 4 < 1)
print(type(3 * 2.5 * 4 < 1))
myFirstVariable = 3 * 2.5 * 4
print(myFirstVariable)
print(type(myFirstVariable))
print(myFirstVariable < 1)
print(type(myFirstVariable < 1))
print('Bye!')

Hello World
<class 'str'>
5
<class 'int'>
None
<class 'NoneType'>
False
<class 'bool'>
30.0
<class 'float'>
False
<class 'bool'>
{{{{{nothing prints out for this line}}}}}
30.0
<class 'float'>
False
<class 'bool'>
Bye!

“Grammar” Gotcha: “=“ vs. “==”

Programming 101

 ==
 expression operation meaning:

True/False: does the left side equal the right side?

 “1+2 == 4-1” is an “expression” whose “output value” is “True”

 =
 statement operation meaning

save the ‘output value’ of the ‘expression’ to the right of the ‘=’
under the nickname mentioned to the left of the ‘=’

 “equalityCheckResult = 1+2 == 4-1”
is a “statement” that saves “True” into “equalityCheckResult”

== vs. = 😱😓😭

No shame in “Programming By Google”!

Reminder

Enjoy the code, but
(40 minutes ≠ expert!)

Watch the input→output data

Runnable code:
https://pypancsv.github.io/pypancsv

Examples

sample1.csv
 7 rows, 5 columns (people & employer)
Contacts from “Data Source #1”

 6 rows, 5 columns (people & favorite food)
Contacts from “Data Source #2”

sample2.csv

 9 rows, 5 columns (people & DOB & address)
Contacts from “Data Source #3”

sample3.csv

 6 rows, 4 columns (people & each course registered for)
Course Registration transactions from “Data Source #4”

sample4.csv

First 3 Lines Of Every Example
(hidden in upcoming slides)
 import pandas

 pandas.set_option('expand_frame_repr', False)

 df1 = pandas.read_csv('c:\\yay\\sample1.csv')

 “Please let me use the extra commands that come
with ‘Pandas.’”

 “Don’t do annoying line-wrapping when I ‘print()’
data that ‘Pandas’ has processed.”

 “Read ‘c:\yay\sample1.csv’ from my hard drive
into Python. Save the Python copy into a
variable/nickname called ‘df1.’”

Notes:
o I’ll use “df2” to import “sample2.csv,” etc.

o I chose “df…” because Python calls the “data
type” representing “2-D table-shaped data” a
“Pandas DataFrame.”

o Online copies of examples might more inside
“.read_csv()” to correctly handle dates, etc.

Example #1: CSV -> Pandas.
Print. Export first five lines to new CSV.
 print('---Here are all 7 lines---')
 print(df1)
 fivelinedf = df1.head(5)
 fivelinedf.to_csv('C:\\yay\\out_fiveline.csv',

index=False, quoting=1)

---Here are all 7 lines---
Id First Last Email Company

0 5829 Jimmy Buffet jb@example.com RCA
1 2894 Shirley Chisholm sc@example.com United States Congress
2 294 Marilyn Monroe mm@example.com Fox
3 30829 Cesar Chavez cc@example.com United Farm Workers
4 827 Vandana Shiva vs@example.com Navdanya
5 9284 Andrea Smith as@example.com University of California
6 724 Albert Howard ah@example.com Imperial College of Science

Example #2: Row Filtering
 print('---What is in "Last" for each row?---')
 lastNameSeries = df1['Last']
 print(lastNameSeries)

 print('---For each row, does "Last" start w/ "C" or "S"?---')
 lastCSBooleanSeries = lastNameSeries.str.startswith('C') | lastNameSeries.str.startswith('S')
 print(lastCSBooleanSeries)

 lastCSdf = df1[lastCSBooleanSeries]
 lastCSdf.to_csv('C:\\yay\\out_lastcs.csv', index=False, quoting=1)

---What is in "Last" for each row?---
0 Buffet
1 Chisholm
2 Monroe
3 Chavez
4 Shiva
5 Smith
6 Howard
Name: Last, dtype: object
---For each row, does "Last" start w/ "C" or "S"?---
0 False
1 True
2 False
3 True
4 True
5 True
6 False
Name: Last, dtype: bool

Example #3: Complex Cell Updates
 theseRowsLastNamesStartWithCapitalS = df1['Last'].str.startswith('S')
 theseRowsHaveA4InTheirId = df1['Id'].astype(str).str.contains('4')
 df1.loc[theseRowsLastNamesStartWithCapitalS,'Last'] = 'aaa'
 df1.loc[theseRowsHaveA4InTheirId,'Email'] = 'bbb'
 df1.loc[theseRowsLastNamesStartWithCapitalS,'New1'] = 'ccc'
 df1.loc[theseRowsHaveA4InTheirId,'New2'] = 'ddd'
 df1['New3'] = 'eee'
 df1 = df1.drop(['Id','Company'], axis=1)
 df1.to_csv('C:\\yay\\out_complexupdates.csv', index=False, quoting=1)

Example #4: Multi-Column VLOOKUP
 betterdf2 = df2.rename(columns = {'LastName':'Last', 'FirstName':'First', 'Em':'Email'})
 outermergedf = df1.merge(betterdf2, how='outer', on=['Last', 'First'], suffixes=('_csv1', '_csv2'))
 outermergedf.to_csv('C:\\yay\\out_outermerge.csv', index=False, quoting=1)

Example #5: Filtering on Aggregations
 groupingByAddress = df3.groupby('Address')
 groupedDataFrame = groupingByAddress.apply(lambda x: x[x['D.O.B.'] == x['D.O.B.'].min()])
 outputdf = groupedDataFrame.reset_index(drop=True)
 outputdf.to_csv('C:\\yay\\out_oldest_person_per_address.csv', index=False, quoting=1)

Example #6: Pivoting log -> people
 import numpy
 df4['Program Registered For'] = 'Prg_' + df4['Program Registered For']
 non_program_columns = list(filter(lambda x: x != 'Program Registered For', df4.keys()))
 pivotdf = pandas.pivot_table(df4, index=non_program_columns, columns='Program Registered For', aggfunc=numpy.size)
 pivotdf[pandas.notnull(pivotdf)] = 'Registered'
 pivotdf.reset_index(inplace=True)
 pivotdf.to_csv('C:\\yay\\out_pivoted_program_registrations.csv', index=False, quoting=1)

 If your Python program crashes when it gets to “.to_csv(…)”
 Is the CSV you’re trying to save open in Excel?

 Close Excel and run your program again

Pro Tip: Close Excel

If your “IDE” includes a new-ish version of Python & Pandas, plus plugins like “xlrd”…

 Import:
 myNickname = pandas.read_excel(…)

 Works w/ simple, starts-in-A1 Excel tables
 Avoids XLS→CSV headache (Excel XLS→CSV loves to strip your leading 0’s.) 😭

 Export: myNickname.to_excel(…)
 myNickname.to_excel(…)

 XLS→CSV with Python:
 dfx = pandas.read_excel('C:\\yay\\fromexcel.xlsx', 'Sheet1', converters={'Zip':str})
 dfx.to_csv('C:\\yay\\fromexcel.csv', index=False, quoting=1)

Bonus: Excel files

Recap

 “I saw words today that … looked relevant …”
(.min(), 'Email', .to_csv() …)

 “That code is way easier to ‘sight read’ than Excel VBA.”

 “Wow, that’s a lot of action for so little code.”

And to make my day…
 “I’m pretty handy copying, pasting, and modifying fancy

Excel formulas I find online.
I think I could figure out how to do the same with this.”

Desired Takeaways

 Today’s slides with code editable/runnable online & quizzes! +
“common operations & how to use them” list:
https://tinyurl.com/pypancsv
Hands-On Trainings: https://tinyurl.com/handson-pypancsv

 IDEs:
 WinPython (desktop) -- no admin rights needed

https://tinyurl.com/PyPanCsvWinIde
 CodeBunk / Repl.it (online) -- NEVER use private data!

https://codebunk.com/b/ & https://repl.it/languages/python3
 Practical Business Python blog (start @ end & skim to now):

http://pbpython.com

Further Resources

Questions? Revisit examples?

Here’s a cute picture of Pandas

Runnable code / slides / exercises: https://tinyurl.com/pypancsv

Hands-on training
mailing list:

https://tinyurl.com/handson-pypancsv

